Please use this identifier to cite or link to this item: https://doi.org/10.1007/BF02567697
DC FieldValue
dc.titleInvariant differential operators on symplectic grassmann manifolds
dc.contributor.authorSchwarz, G.
dc.contributor.authorZhu, C.-b.
dc.date.accessioned2014-10-28T02:37:12Z
dc.date.available2014-10-28T02:37:12Z
dc.date.issued1994-12
dc.identifier.citationSchwarz, G., Zhu, C.-b. (1994-12). Invariant differential operators on symplectic grassmann manifolds. Manuscripta Mathematica 82 (1) : 191-206. ScholarBank@NUS Repository. https://doi.org/10.1007/BF02567697
dc.identifier.issn00252611
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/103443
dc.description.abstractLet M 2n,r denote the vector space of real or complex 2n×r matrices with the natural action of the symplectic group Sp 2n, and let G=G n,r =Sp 2n ×M 2n,r denote the corresponding semi-direct product. For any integer p with 0≤p≤n-1, let H denote the subgroup G p,r ×Sp 2n-2p of G. We explicitly compute the algebra of left invariant differential operators on G/H, and we show that it is a free algebra if and only if r≤2n-2p+1. We also give orthogonal analogues of these results, generalizing those of Gonzalez and Helgason [3]. © 1994 Springer-Verlag.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1007/BF02567697
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentMATHEMATICS
dc.description.doi10.1007/BF02567697
dc.description.sourcetitleManuscripta Mathematica
dc.description.volume82
dc.description.issue1
dc.description.page191-206
dc.identifier.isiutA1994MY32300007
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.