Please use this identifier to cite or link to this item:
https://doi.org/10.1007/BF02567697
DC Field | Value | |
---|---|---|
dc.title | Invariant differential operators on symplectic grassmann manifolds | |
dc.contributor.author | Schwarz, G. | |
dc.contributor.author | Zhu, C.-b. | |
dc.date.accessioned | 2014-10-28T02:37:12Z | |
dc.date.available | 2014-10-28T02:37:12Z | |
dc.date.issued | 1994-12 | |
dc.identifier.citation | Schwarz, G., Zhu, C.-b. (1994-12). Invariant differential operators on symplectic grassmann manifolds. Manuscripta Mathematica 82 (1) : 191-206. ScholarBank@NUS Repository. https://doi.org/10.1007/BF02567697 | |
dc.identifier.issn | 00252611 | |
dc.identifier.uri | http://scholarbank.nus.edu.sg/handle/10635/103443 | |
dc.description.abstract | Let M 2n,r denote the vector space of real or complex 2n×r matrices with the natural action of the symplectic group Sp 2n, and let G=G n,r =Sp 2n ×M 2n,r denote the corresponding semi-direct product. For any integer p with 0≤p≤n-1, let H denote the subgroup G p,r ×Sp 2n-2p of G. We explicitly compute the algebra of left invariant differential operators on G/H, and we show that it is a free algebra if and only if r≤2n-2p+1. We also give orthogonal analogues of these results, generalizing those of Gonzalez and Helgason [3]. © 1994 Springer-Verlag. | |
dc.description.uri | http://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1007/BF02567697 | |
dc.source | Scopus | |
dc.type | Article | |
dc.contributor.department | MATHEMATICS | |
dc.description.doi | 10.1007/BF02567697 | |
dc.description.sourcetitle | Manuscripta Mathematica | |
dc.description.volume | 82 | |
dc.description.issue | 1 | |
dc.description.page | 191-206 | |
dc.identifier.isiut | A1994MY32300007 | |
Appears in Collections: | Staff Publications |
Show simple item record
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.