Please use this identifier to cite or link to this item: https://doi.org/10.1353/ajm.2012.0007
DC FieldValue
dc.titleInjectivity radius and gonality of a compact Riemann surface
dc.contributor.authorHwang, J.-M.
dc.contributor.authorTo, W.-K.
dc.date.accessioned2014-10-28T02:37:04Z
dc.date.available2014-10-28T02:37:04Z
dc.date.issued2012-02
dc.identifier.citationHwang, J.-M., To, W.-K. (2012-02). Injectivity radius and gonality of a compact Riemann surface. American Journal of Mathematics 134 (1) : 259-283. ScholarBank@NUS Repository. https://doi.org/10.1353/ajm.2012.0007
dc.identifier.issn00029327
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/103430
dc.description.abstractWe obtain a sharp lower bound for the volumes of purely 1-dimensional complex analytic subvarieties in a geodesic tubular neighborhood of the diagonal of the Cartesian product of a compact Riemann surface with itself. This leads to a lower bound of the Seshadri number of the canonical line bundle of the Cartesian product with respect to the diagonal. As a consequence, we obtain an upper bound for the hyperbolic injectivity radii of compact Riemann surfaces of a fixed gonality. In particular, we obtain the limiting behavior of the gonalities of a tower of compact Riemann surfaces. We also give an application of our results to an invariant related to the ample cone of the symmetric product of a Riemann surface. © 2012 by The Johns Hopkins University Press.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1353/ajm.2012.0007
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentMATHEMATICS
dc.description.doi10.1353/ajm.2012.0007
dc.description.sourcetitleAmerican Journal of Mathematics
dc.description.volume134
dc.description.issue1
dc.description.page259-283
dc.identifier.isiut000320009800009
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.