Please use this identifier to cite or link to this item:
https://doi.org/10.1007/BF02579222
DC Field | Value | |
---|---|---|
dc.title | H-extension of graphs | |
dc.contributor.author | Shee, S.C. | |
dc.contributor.author | Teh, H.H. | |
dc.date.accessioned | 2014-10-28T02:36:22Z | |
dc.date.available | 2014-10-28T02:36:22Z | |
dc.date.issued | 1984-06 | |
dc.identifier.citation | Shee, S.C., Teh, H.H. (1984-06). H-extension of graphs. Combinatorica 4 (2-3) : 207-211. ScholarBank@NUS Repository. https://doi.org/10.1007/BF02579222 | |
dc.identifier.issn | 02099683 | |
dc.identifier.uri | http://scholarbank.nus.edu.sg/handle/10635/103370 | |
dc.description.abstract | We consider the problem of constructing a graph G* from a collection of isomorphic copies of a graph G in such a way that for every two copies of G, either no vertices or a section graph isomorphic to a graph H is identified. It is shown that if G can be partitioned into vertex-disjoint copies of H, then G* can be made to have at most |H| orbits. A condition on G so that G* can be vertextransitive is also included. © 1984 Akadémiai Kiadó. | |
dc.description.uri | http://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1007/BF02579222 | |
dc.source | Scopus | |
dc.subject | AMS subject classification (1980): 05C10, 05C25 | |
dc.type | Article | |
dc.contributor.department | MATHEMATICS | |
dc.description.doi | 10.1007/BF02579222 | |
dc.description.sourcetitle | Combinatorica | |
dc.description.volume | 4 | |
dc.description.issue | 2-3 | |
dc.description.page | 207-211 | |
dc.identifier.isiut | A1984AEN9000012 | |
Appears in Collections: | Staff Publications |
Show simple item record
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.