Please use this identifier to cite or link to this item: https://doi.org/10.1007/BF02579222
DC FieldValue
dc.titleH-extension of graphs
dc.contributor.authorShee, S.C.
dc.contributor.authorTeh, H.H.
dc.date.accessioned2014-10-28T02:36:22Z
dc.date.available2014-10-28T02:36:22Z
dc.date.issued1984-06
dc.identifier.citationShee, S.C., Teh, H.H. (1984-06). H-extension of graphs. Combinatorica 4 (2-3) : 207-211. ScholarBank@NUS Repository. https://doi.org/10.1007/BF02579222
dc.identifier.issn02099683
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/103370
dc.description.abstractWe consider the problem of constructing a graph G* from a collection of isomorphic copies of a graph G in such a way that for every two copies of G, either no vertices or a section graph isomorphic to a graph H is identified. It is shown that if G can be partitioned into vertex-disjoint copies of H, then G* can be made to have at most |H| orbits. A condition on G so that G* can be vertextransitive is also included. © 1984 Akadémiai Kiadó.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1007/BF02579222
dc.sourceScopus
dc.subjectAMS subject classification (1980): 05C10, 05C25
dc.typeArticle
dc.contributor.departmentMATHEMATICS
dc.description.doi10.1007/BF02579222
dc.description.sourcetitleCombinatorica
dc.description.volume4
dc.description.issue2-3
dc.description.page207-211
dc.identifier.isiutA1984AEN9000012
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.