Please use this identifier to cite or link to this item: https://scholarbank.nus.edu.sg/handle/10635/103369
DC FieldValue
dc.titleHermitian K-theory of the integers
dc.contributor.authorBerrick, A.J.
dc.contributor.authorKaroubi, M.
dc.date.accessioned2014-10-28T02:36:21Z
dc.date.available2014-10-28T02:36:21Z
dc.date.issued2005-08
dc.identifier.citationBerrick, A.J.,Karoubi, M. (2005-08). Hermitian K-theory of the integers. American Journal of Mathematics 127 (4) : 785-823. ScholarBank@NUS Repository.
dc.identifier.issn00029327
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/103369
dc.description.abstractRognes and Weibel used Voevodsky's work on the Milnor conjecture to deduce the strong Dwyer-Friedlander form of the Lichtenbaum-Quillen conjecture at the prime 2. In consequence (the 2-completion of) the classifying space for algebraic K-theory of the integers ℤ[1/2] can be expressed as a fiber product of well-understood spaces BO and BGL(double-struck F sign 3)+ over BU. Similar results are now obtained for Hermitian K-theory and the classifying spaces of the integral symplectic and orthogonal groups. For the integers ℤ[1/2], this leads to computations of the 2-primary Hermitian K-groups and affirmation of the Lichtenbaum-Quillen conjecture in the framework of Hermitian K-theory.
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentMATHEMATICS
dc.description.sourcetitleAmerican Journal of Mathematics
dc.description.volume127
dc.description.issue4
dc.description.page785-823
dc.identifier.isiutNOT_IN_WOS
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.