Please use this identifier to cite or link to this item: https://doi.org/10.1007/s00200-008-0071-3
DC FieldValue
dc.titleFunction-field codes
dc.contributor.authorHachenberger, D.
dc.contributor.authorNiederreiter, H.
dc.contributor.authorXing, C.
dc.date.accessioned2014-10-28T02:35:38Z
dc.date.available2014-10-28T02:35:38Z
dc.date.issued2008-06
dc.identifier.citationHachenberger, D., Niederreiter, H., Xing, C. (2008-06). Function-field codes. Applicable Algebra in Engineering, Communications and Computing 19 (3) : 201-211. ScholarBank@NUS Repository. https://doi.org/10.1007/s00200-008-0071-3
dc.identifier.issn09381279
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/103308
dc.description.abstractFunction-field codes provide a general perspective on the construction of algebraic-geometry codes. We briefly review the theory of function-field codes and establish some new results in this theory, including a propagation rule. We show how to derive linear codes from function-field codes, thus generalizing a construction of linear codes due to Xing, Niederreiter, and Lam. © 2008 Springer-Verlag.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1007/s00200-008-0071-3
dc.sourceScopus
dc.subjectAlgebraic function field
dc.subjectAlgebraic-geometry code
dc.subjectFunction-field code
dc.subjectLinear code
dc.typeArticle
dc.contributor.departmentMATHEMATICS
dc.description.doi10.1007/s00200-008-0071-3
dc.description.sourcetitleApplicable Algebra in Engineering, Communications and Computing
dc.description.volume19
dc.description.issue3
dc.description.page201-211
dc.description.codenAAECE
dc.identifier.isiut000256088900004
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.