Please use this identifier to cite or link to this item: https://doi.org/10.1112/plms/pdt022
DC FieldValue
dc.titleFinite index subgroups of mapping class groups
dc.contributor.authorBerrick, A.J.
dc.contributor.authorGebhardt, V.
dc.contributor.authorParis, L.
dc.date.accessioned2014-10-28T02:35:16Z
dc.date.available2014-10-28T02:35:16Z
dc.date.issued2014
dc.identifier.citationBerrick, A.J., Gebhardt, V., Paris, L. (2014). Finite index subgroups of mapping class groups. Proceedings of the London Mathematical Society 108 (3) : 575-599. ScholarBank@NUS Repository. https://doi.org/10.1112/plms/pdt022
dc.identifier.issn1460244X
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/103272
dc.description.abstractLet g ≥ 3 and n ≥ 0, and let ℳg, n be the mapping class group of a surface of genus g with n boundary components. We prove that ℳg, n contains a unique subgroup of index 2g-1(2 g-1) up to conjugation, a unique subgroup of index 2 g-1(2g+1) up to conjugation, and the other proper subgroups of ℳg, n are of index greater than 2 g-1(2g+1). In particular, the minimum index for a proper subgroup of ℳg, n is 2g-1(2g-1). © 2013 London Mathematical Society.
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentMATHEMATICS
dc.description.doi10.1112/plms/pdt022
dc.description.sourcetitleProceedings of the London Mathematical Society
dc.description.volume108
dc.description.issue3
dc.description.page575-599
dc.identifier.isiut000333287900002
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.