Please use this identifier to cite or link to this item: https://scholarbank.nus.edu.sg/handle/10635/103215
DC FieldValue
dc.titleEstimating structured correlation matrices in smooth Gaussian random field models
dc.contributor.authorLoh, W.-L.
dc.contributor.authorLam, T.-K.
dc.date.accessioned2014-10-28T02:34:37Z
dc.date.available2014-10-28T02:34:37Z
dc.date.issued2000
dc.identifier.citationLoh, W.-L.,Lam, T.-K. (2000). Estimating structured correlation matrices in smooth Gaussian random field models. Annals of Statistics 28 (3) : 880-904. ScholarBank@NUS Repository.
dc.identifier.issn00905364
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/103215
dc.description.abstractThis article considers the estimation of structured correlation matrices in infinitely differentiable Gaussian random field models. The problem is essentially motivated by the stochastic modeling of smooth deterministic responses in computer experiments. In particular, the log-likelihood function is determined explicitly in closed-form and the sieve maximum likelihood estimators are shown to be strongly consistent under mild conditions.
dc.sourceScopus
dc.subjectComputer experiment
dc.subjectSieve maximum likelihood estimation
dc.subjectSmooth Gaussian random field
dc.subjectStrong consistency
dc.subjectStructured correlation matrix
dc.typeArticle
dc.contributor.departmentMATHEMATICS
dc.contributor.departmentSTATISTICS & APPLIED PROBABILITY
dc.description.sourcetitleAnnals of Statistics
dc.description.volume28
dc.description.issue3
dc.description.page880-904
dc.identifier.isiutNOT_IN_WOS
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.