Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.aim.2012.03.009
DC FieldValue
dc.titleDelambre-Gauss formulas for augmented, right-angled hexagons in hyperbolic 4-space
dc.contributor.authorTan, S.P.
dc.contributor.authorWong, Y.L.
dc.contributor.authorZhang, Y.
dc.date.accessioned2014-10-28T02:33:33Z
dc.date.available2014-10-28T02:33:33Z
dc.date.issued2012-06-20
dc.identifier.citationTan, S.P., Wong, Y.L., Zhang, Y. (2012-06-20). Delambre-Gauss formulas for augmented, right-angled hexagons in hyperbolic 4-space. Advances in Mathematics 230 (3) : 927-956. ScholarBank@NUS Repository. https://doi.org/10.1016/j.aim.2012.03.009
dc.identifier.issn00018708
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/103119
dc.description.abstractWe study the geometry of right-angled hexagons in the hyperbolic 4-space H 4 via Clifford numbers or quaternions. We show how to augment alternate sides of such a hexagon and arbitrarily orient each line and plane involved, so that for the non-augmented sides, we can define quaternion half side-lengths whose angular parts are obtained from half the Euler angles associated to a certain orientation-preserving isometry of the Euclidean 3-space. We also define appropriate complex half side-lengths for the augmented sides of the augmented hexagon. We further explain how to geometrically read off the quaternion half side-lengths for a given oriented, augmented, right-angled hexagon in H 4. Our main result is a set of generalized Delambre-Gauss formulas for oriented, augmented, right-angled hexagons in H 4, involving the quaternion half side-lengths and the complex half side-lengths. We also show in the appendix how the same method gives Delambre-Gauss formulas for oriented right-angled hexagons in H 3, from which the well-known laws of sines and of cosines can be deduced. These formulas generalize the classical Delambre-Gauss formulas for spherical/hyperbolic triangles. © 2012 Elsevier Ltd.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1016/j.aim.2012.03.009
dc.sourceScopus
dc.subjectClifford number
dc.subjectDelambre-Gauss formulas
dc.subjectEuler angles
dc.subjectHyperbolic 4-space
dc.subjectPrimary
dc.subjectQuaternion length
dc.subjectRight-angled hexagon
dc.subjectSecondary
dc.typeArticle
dc.contributor.departmentMATHEMATICS
dc.description.doi10.1016/j.aim.2012.03.009
dc.description.sourcetitleAdvances in Mathematics
dc.description.volume230
dc.description.issue3
dc.description.page927-956
dc.identifier.isiut000304386400006
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.