Please use this identifier to cite or link to this item: https://doi.org/10.1007/s002110100265
DC FieldValue
dc.titleConvergence of cascade algorithms in Sobolev spaces and integrals of wavelets
dc.contributor.authorJia, R.-Q.
dc.contributor.authorJiang, Q.
dc.contributor.authorLee, S.L.
dc.date.accessioned2014-10-28T02:32:59Z
dc.date.available2014-10-28T02:32:59Z
dc.date.issued2002-05
dc.identifier.citationJia, R.-Q., Jiang, Q., Lee, S.L. (2002-05). Convergence of cascade algorithms in Sobolev spaces and integrals of wavelets. Numerische Mathematik 91 (3) : 453-473. ScholarBank@NUS Repository. https://doi.org/10.1007/s002110100265
dc.identifier.issn0029599X
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/103071
dc.description.abstractThe cascade algorithm with mask a and dilation M generates a sequence φn, n = 1, 2,..., by the iterative process φn(x) = ∑αεℤs a(α)φn-1(Mx - α) x ε ℝs, from a starting function φ0, where M is a dilation matrix. A complete characterization is given for the strong convergence of cascade algorithms in Sobolev spaces for the case in which M is isotropic. The results on the convergence of cascade algorithms are used to deduce simple conditions for the computation of integrals of products of derivatives of refinable functions and wavelets.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1007/s002110100265
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentMATHEMATICS
dc.description.doi10.1007/s002110100265
dc.description.sourcetitleNumerische Mathematik
dc.description.volume91
dc.description.issue3
dc.description.page453-473
dc.identifier.isiut000176315600003
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.