Please use this identifier to cite or link to this item:
https://doi.org/10.1137/060675009
DC Field | Value | |
---|---|---|
dc.title | Compactly supported symmetric C∞ wavelets with spectral approximation order | |
dc.contributor.author | Han, B. | |
dc.contributor.author | Shen, Z. | |
dc.date.accessioned | 2014-10-28T02:32:16Z | |
dc.date.available | 2014-10-28T02:32:16Z | |
dc.date.issued | 2008-09 | |
dc.identifier.citation | Han, B., Shen, Z. (2008-09). Compactly supported symmetric C∞ wavelets with spectral approximation order. SIAM Journal on Mathematical Analysis 40 (3) : 905-938. ScholarBank@NUS Repository. https://doi.org/10.1137/060675009 | |
dc.identifier.issn | 00361410 | |
dc.identifier.uri | http://scholarbank.nus.edu.sg/handle/10635/103008 | |
dc.description.abstract | In this paper, we obtain symmetric C∞ real-valued tight wavelet frames in L2(R) with compact support and the spectral frame approximation order. Furthermore, we present a family of symmetric compactly supported C∞ orthonormal complex wavelets in L2(R). A complete analysis of nonstationary tight wavelet frames and orthonormal wavelet bases in L2(R) is given. ©2008 Society for Industrial and Applied Mathematics. | |
dc.description.uri | http://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1137/060675009 | |
dc.source | Scopus | |
dc.subject | Nonstationary C∞ wavelets | |
dc.subject | Nonstationary cascade algorithm | |
dc.subject | Spectral frame approximation order | |
dc.subject | Symmetric orthonormal complex wavelets | |
dc.subject | Symmetric tight wavelet frames | |
dc.type | Article | |
dc.contributor.department | MATHEMATICS | |
dc.description.doi | 10.1137/060675009 | |
dc.description.sourcetitle | SIAM Journal on Mathematical Analysis | |
dc.description.volume | 40 | |
dc.description.issue | 3 | |
dc.description.page | 905-938 | |
dc.identifier.isiut | 000260848800002 | |
Appears in Collections: | Staff Publications |
Show simple item record
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.