Please use this identifier to cite or link to this item:
https://doi.org/10.2140/gt.2013.17.235
DC Field | Value | |
---|---|---|
dc.title | Combinatorial group theory and the homotopy groups of finite complexes | |
dc.contributor.author | Mikhailov, R. | |
dc.contributor.author | Wu, J. | |
dc.date.accessioned | 2014-10-28T02:32:11Z | |
dc.date.available | 2014-10-28T02:32:11Z | |
dc.date.issued | 2013-03-07 | |
dc.identifier.citation | Mikhailov, R., Wu, J. (2013-03-07). Combinatorial group theory and the homotopy groups of finite complexes. Geometry and Topology 17 (1) : 235-272. ScholarBank@NUS Repository. https://doi.org/10.2140/gt.2013.17.235 | |
dc.identifier.issn | 14653060 | |
dc.identifier.uri | http://scholarbank.nus.edu.sg/handle/10635/103000 | |
dc.description.abstract | For n > k≥3, we construct a finitely generated group with explicit generators and relations obtained from braid groups, whose center is exactly πn.(S k). Our methods can be extended to obtain combinatorial descriptions of homotopy groups of finite complexes. As an example, we also give a combinatorial description of the homotopy groups of Moore spaces. | |
dc.description.uri | http://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.2140/gt.2013.17.235 | |
dc.source | Scopus | |
dc.type | Article | |
dc.contributor.department | MATHEMATICS | |
dc.description.doi | 10.2140/gt.2013.17.235 | |
dc.description.sourcetitle | Geometry and Topology | |
dc.description.volume | 17 | |
dc.description.issue | 1 | |
dc.description.page | 235-272 | |
dc.identifier.isiut | 000321304100006 | |
Appears in Collections: | Staff Publications |
Show simple item record
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.