Please use this identifier to cite or link to this item: https://doi.org/10.2140/gt.2013.17.235
DC FieldValue
dc.titleCombinatorial group theory and the homotopy groups of finite complexes
dc.contributor.authorMikhailov, R.
dc.contributor.authorWu, J.
dc.date.accessioned2014-10-28T02:32:11Z
dc.date.available2014-10-28T02:32:11Z
dc.date.issued2013-03-07
dc.identifier.citationMikhailov, R., Wu, J. (2013-03-07). Combinatorial group theory and the homotopy groups of finite complexes. Geometry and Topology 17 (1) : 235-272. ScholarBank@NUS Repository. https://doi.org/10.2140/gt.2013.17.235
dc.identifier.issn14653060
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/103000
dc.description.abstractFor n > k≥3, we construct a finitely generated group with explicit generators and relations obtained from braid groups, whose center is exactly πn.(S k). Our methods can be extended to obtain combinatorial descriptions of homotopy groups of finite complexes. As an example, we also give a combinatorial description of the homotopy groups of Moore spaces.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.2140/gt.2013.17.235
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentMATHEMATICS
dc.description.doi10.2140/gt.2013.17.235
dc.description.sourcetitleGeometry and Topology
dc.description.volume17
dc.description.issue1
dc.description.page235-272
dc.identifier.isiut000321304100006
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.