Please use this identifier to cite or link to this item: https://doi.org/10.2140/pjm.2006.225.287
DC FieldValue
dc.titleCircle packings on surfaces with projective structures and uniformization
dc.contributor.authorKojima, S.
dc.contributor.authorMizushima, S.
dc.contributor.authorTan, S.P.
dc.date.accessioned2014-10-28T02:32:02Z
dc.date.available2014-10-28T02:32:02Z
dc.date.issued2006-06
dc.identifier.citationKojima, S., Mizushima, S., Tan, S.P. (2006-06). Circle packings on surfaces with projective structures and uniformization. Pacific Journal of Mathematics 225 (2) : 287-300. ScholarBank@NUS Repository. https://doi.org/10.2140/pjm.2006.225.287
dc.identifier.issn00308730
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/102985
dc.description.abstractLet Σg be a closed orientable surface of genus g ≥ 2 and a graph on Σg with one vertex that lifts to a triangulation of the universal cover. We have shown before that the cross ratio parameter space C{script}τ associated with τ, which can be identified with the set of all pairs of a projective structure and a circle packing on it with nerve isotopic to τ is homeomorphic to R{double-struck}6g-6, and moreover that the forgetting map of C{script}τ to the space of projective structures is injective. Here we show that the composition of the forgetting map with the uniformization from C{script}τ to the Teichmüller space T{script}g is proper.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.2140/pjm.2006.225.287
dc.sourceScopus
dc.subjectCircle packing
dc.subjectProjective structure
dc.subjectTeichmüller space
dc.subjectUniformization
dc.typeArticle
dc.contributor.departmentMATHEMATICS
dc.description.doi10.2140/pjm.2006.225.287
dc.description.sourcetitlePacific Journal of Mathematics
dc.description.volume225
dc.description.issue2
dc.description.page287-300
dc.identifier.isiut000240148500006
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.