Please use this identifier to cite or link to this item: https://doi.org/10.1006/jdeq.2000.3890
DC FieldValue
dc.titleCenter Manifolds for Invariant Sets
dc.contributor.authorChow, S.-N.
dc.contributor.authorLiu, W.
dc.contributor.authorYi, Y.
dc.date.accessioned2014-10-28T02:31:49Z
dc.date.available2014-10-28T02:31:49Z
dc.date.issued2000-12-10
dc.identifier.citationChow, S.-N., Liu, W., Yi, Y. (2000-12-10). Center Manifolds for Invariant Sets. Journal of Differential Equations 168 (2) : 355-385. ScholarBank@NUS Repository. https://doi.org/10.1006/jdeq.2000.3890
dc.identifier.issn00220396
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/102970
dc.description.abstractWe derive a general center manifolds theory for a class of compact invariant sets of flows generated by a smooth vector field in Rn. By applying the Hadamard graph transform technique, it is shown that, associated to a natural dynamical characteristic of the linearized flow along the invariant set, there exists an invariant manifold (called a center manifold) of the invariant set which contains every locally bounded solution (in particular, contains the invariant set) and is persistent under small perturbations. © 2000 Academic Press.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1006/jdeq.2000.3890
dc.sourceScopus
dc.subjectCenter manifold
dc.subjectGraph transform
dc.subjectOverflowing
dc.typeArticle
dc.contributor.departmentMATHEMATICS
dc.description.doi10.1006/jdeq.2000.3890
dc.description.sourcetitleJournal of Differential Equations
dc.description.volume168
dc.description.issue2
dc.description.page355-385
dc.description.codenJDEQA
dc.identifier.isiut000166115000005
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.