Please use this identifier to cite or link to this item:
https://doi.org/10.1007/s00229-012-0567-9
DC Field | Value | |
---|---|---|
dc.title | Blow-up rates and uniqueness of large solutions for elliptic equations with nonlinear gradient term and singular or degenerate weights | |
dc.contributor.author | Chen, Y. | |
dc.contributor.author | Pang, P.Y.H. | |
dc.contributor.author | Wang, M. | |
dc.date.accessioned | 2014-10-28T02:31:24Z | |
dc.date.available | 2014-10-28T02:31:24Z | |
dc.date.issued | 2013 | |
dc.identifier.citation | Chen, Y., Pang, P.Y.H., Wang, M. (2013). Blow-up rates and uniqueness of large solutions for elliptic equations with nonlinear gradient term and singular or degenerate weights. Manuscripta Mathematica 141 (1-2) : 171-193. ScholarBank@NUS Repository. https://doi.org/10.1007/s00229-012-0567-9 | |
dc.identifier.issn | 00252611 | |
dc.identifier.uri | http://scholarbank.nus.edu.sg/handle/10635/102934 | |
dc.description.abstract | This paper deals with the blow-up rate and uniqueness of large solutions of the elliptic equation Δu = b(x)f(u) + c(x)g(u){pipe}∇u{pipe}q, where q > 0, f(u) and g(u) are regularly varying functions at infinity, and the weight functions b(x), c(x) ∈ Cα(Ω, ℝ+) 0 < α < 1, may be singular or degenerate on the boundary ∂Ω. Combining the regular variation theoretic approach of Cîrstea-Rǎdulescu and the systematic approach of Bandle-Giarrusso, we are able to improve and generalize most of the previously available results in the literature. © 2012 Springer-Verlag. | |
dc.description.uri | http://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1007/s00229-012-0567-9 | |
dc.source | Scopus | |
dc.type | Article | |
dc.contributor.department | MATHEMATICS | |
dc.description.doi | 10.1007/s00229-012-0567-9 | |
dc.description.sourcetitle | Manuscripta Mathematica | |
dc.description.volume | 141 | |
dc.description.issue | 1-2 | |
dc.description.page | 171-193 | |
dc.identifier.isiut | 000317846300010 | |
Appears in Collections: | Staff Publications |
Show simple item record
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.