Please use this identifier to cite or link to this item:
https://doi.org/10.3934/dcds.2014.34.2013
DC Field | Value | |
---|---|---|
dc.title | Analytic skew-products of quadratic polynomials over misiurewicz-thurston maps | |
dc.contributor.author | Gao, R. | |
dc.contributor.author | Shen, W. | |
dc.date.accessioned | 2014-10-28T02:30:36Z | |
dc.date.available | 2014-10-28T02:30:36Z | |
dc.date.issued | 2014-05 | |
dc.identifier.citation | Gao, R., Shen, W. (2014-05). Analytic skew-products of quadratic polynomials over misiurewicz-thurston maps. Discrete and Continuous Dynamical Systems- Series A 34 (5) : 2013-2036. ScholarBank@NUS Repository. https://doi.org/10.3934/dcds.2014.34.2013 | |
dc.identifier.issn | 10780947 | |
dc.identifier.uri | http://scholarbank.nus.edu.sg/handle/10635/102863 | |
dc.description.abstract | We consider skew-products of quadratic maps over certain Misiurewicz-Thurston maps and study their statistical properties. We prove that, when the coupling function is a polynomial of odd degree, such a system admits two positive Lyapunov exponents almost everywhere and a unique absolutely continuous invariant probability measure. | |
dc.description.uri | http://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.3934/dcds.2014.34.2013 | |
dc.source | Scopus | |
dc.subject | Absolutely continuous invariant measure | |
dc.subject | Lyapunov exponent | |
dc.subject | Misiurewicz-Thurston maps | |
dc.subject | Non-uniform expansion | |
dc.subject | Viana maps | |
dc.type | Article | |
dc.contributor.department | MATHEMATICS | |
dc.description.doi | 10.3934/dcds.2014.34.2013 | |
dc.description.sourcetitle | Discrete and Continuous Dynamical Systems- Series A | |
dc.description.volume | 34 | |
dc.description.issue | 5 | |
dc.description.page | 2013-2036 | |
dc.identifier.isiut | 000326321700015 | |
Appears in Collections: | Staff Publications |
Show simple item record
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.