Please use this identifier to cite or link to this item: https://doi.org/10.1007/s00373-012-1189-4
DC FieldValue
dc.titleAn Upper Bound for the Total Restrained Domination Number of Graphs
dc.contributor.authorKoh, K.M.
dc.contributor.authorMaleki, Z.
dc.contributor.authorOmoomi, B.
dc.date.accessioned2014-10-28T02:30:28Z
dc.date.available2014-10-28T02:30:28Z
dc.date.issued2013-09
dc.identifier.citationKoh, K.M., Maleki, Z., Omoomi, B. (2013-09). An Upper Bound for the Total Restrained Domination Number of Graphs. Graphs and Combinatorics 29 (5) : 1443-1452. ScholarBank@NUS Repository. https://doi.org/10.1007/s00373-012-1189-4
dc.identifier.issn09110119
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/102851
dc.description.abstractLet G be a graph with vertex set V. A set D ⊆ V is a total restrained dominating set of G if every vertex in V has a neighbor in D and every vertex in V \ D has a neighbor in V \ D. The minimum cardinality of a total restrained dominating set of G is called the total restrained domination number of G, and is denoted by γtr (G). In this paper, we prove that if G is a connected graph of order n ≥ 4 and minimum degree at least two, then γtr(G) ≤ n-3√n/4. © 2012 Springer.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1007/s00373-012-1189-4
dc.sourceScopus
dc.subjectIndependent set
dc.subjectMatching
dc.subjectOpen packing
dc.subjectProbabilistic method
dc.subjectTotal restrained dominating set
dc.subjectTotal restrained domination number
dc.typeArticle
dc.contributor.departmentMATHEMATICS
dc.description.doi10.1007/s00373-012-1189-4
dc.description.sourcetitleGraphs and Combinatorics
dc.description.volume29
dc.description.issue5
dc.description.page1443-1452
dc.identifier.isiut000323374100024
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.