Please use this identifier to cite or link to this item:
https://doi.org/10.1137/050624509
DC Field | Value | |
---|---|---|
dc.title | A quadratically convergent newton method for computing the nearest correlation matrix | |
dc.contributor.author | Qi, H. | |
dc.contributor.author | Sun, D. | |
dc.date.accessioned | 2014-10-28T02:29:10Z | |
dc.date.available | 2014-10-28T02:29:10Z | |
dc.date.issued | 2006 | |
dc.identifier.citation | Qi, H., Sun, D. (2006). A quadratically convergent newton method for computing the nearest correlation matrix. SIAM Journal on Matrix Analysis and Applications 28 (2) : 360-385. ScholarBank@NUS Repository. https://doi.org/10.1137/050624509 | |
dc.identifier.issn | 08954798 | |
dc.identifier.uri | http://scholarbank.nus.edu.sg/handle/10635/102741 | |
dc.description.abstract | The nearest correlation matrix problem is to find a correlation matrix which is closest to a given symmetric matrix in the Frobenius norm. The well-studied dual approach is to reformulate this problem as an unconstrained continuously differentiable convex optimization problem. Gradient methods and quasi-Newton methods such as BFGS have been used directly to obtain globally convergent methods. Since the objective function in the dual approach is not twice continuously differentiable, these methods converge at best linearly. In this paper, we investigate a Newton-type method for the nearest correlation matrix problem. Based on recent developments on strongly semismooth matrix valued functions, we prove the quadratic convergence of the proposed Newton method. Numerical experiments confirm the fast convergence and the high efficiency of the method. © 2006 Society for Industrial and Applied Mathematics. | |
dc.description.uri | http://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1137/050624509 | |
dc.source | Scopus | |
dc.subject | Correlation matrix | |
dc.subject | Newton method | |
dc.subject | Quadratic convergence | |
dc.subject | Semismooth matrix equation | |
dc.type | Article | |
dc.contributor.department | MATHEMATICS | |
dc.description.doi | 10.1137/050624509 | |
dc.description.sourcetitle | SIAM Journal on Matrix Analysis and Applications | |
dc.description.volume | 28 | |
dc.description.issue | 2 | |
dc.description.page | 360-385 | |
dc.identifier.isiut | 000240044000005 | |
Appears in Collections: | Staff Publications |
Show simple item record
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.