Please use this identifier to cite or link to this item: https://doi.org/10.1007/s00211-002-0431-z
DC FieldValue
dc.titleA QR-type reduction for computing the SVD of a general matrix product/quotient
dc.contributor.authorChu, D.
dc.contributor.authorDe Lathauwer, L.
dc.contributor.authorDe Moor, B.
dc.date.accessioned2014-10-28T02:29:09Z
dc.date.available2014-10-28T02:29:09Z
dc.date.issued2003-07
dc.identifier.citationChu, D., De Lathauwer, L., De Moor, B. (2003-07). A QR-type reduction for computing the SVD of a general matrix product/quotient. Numerische Mathematik 95 (1) : 101-121. ScholarBank@NUS Repository. https://doi.org/10.1007/s00211-002-0431-z
dc.identifier.issn0029599X
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/102740
dc.description.abstractIn this paper, a QR-type reduction technique is developed for the computation of the SVD of a general matrix product/quotient A = A1 s1 A2 s2 ⋯ Am sm with Ai ∈ Rn×n and si = 1 or si = -1. First the matrix A is reduced by at most m QR-factoizations to the form Q11 (1) (Q21 (1))-1, where Q11 (1), Q21 (1) ∈ Rn×n and (Q11 (1)T Q11 (1) + (Q21 (1))T Q21 (1) = I. Then the SVD of A is obtained by computing the CSD (Cosine-Sine Decomposition) of Q11 (1) and Q21 (1) using the Matlab command gsvd. The performance of the proposed method is verified by some numerical examples.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1007/s00211-002-0431-z
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentMATHEMATICS
dc.description.doi10.1007/s00211-002-0431-z
dc.description.sourcetitleNumerische Mathematik
dc.description.volume95
dc.description.issue1
dc.description.page101-121
dc.identifier.isiut000184088500005
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.