Please use this identifier to cite or link to this item: https://doi.org/10.1023/A:1013777203597
DC FieldValue
dc.titleA note on the calculation of step-lengths in interior-point methods for semidefinite programming
dc.contributor.authorToh, K.-C.
dc.date.accessioned2014-10-28T02:28:52Z
dc.date.available2014-10-28T02:28:52Z
dc.date.issued2002-03
dc.identifier.citationToh, K.-C. (2002-03). A note on the calculation of step-lengths in interior-point methods for semidefinite programming. Computational Optimization and Applications 21 (3) : 301-310. ScholarBank@NUS Repository. https://doi.org/10.1023/A:1013777203597
dc.identifier.issn09266003
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/102713
dc.description.abstractIn each iteration of an interior-point method for semidefinite programming, the maximum step-length that can be taken by the iterate while maintaining the positive semidefiniteness constraint needs to be estimated. In this note, we show how the maximum step-length can be estimated via the Lanczos iteration, a standard iterative method for estimating the extremal eigenvalues of a matrix. We also give a posteriori error bounds for the estimate. Numerical results on the performance of the proposed method against two commonly used methods for calculating step-lengths (backtracking via Cholesky factorizations and exact eigenvalues computations) are included.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1023/A:1013777203597
dc.sourceScopus
dc.subjectInterior point methods
dc.subjectLanczos iteration
dc.subjectSemidefinite programming
dc.subjectStep-length
dc.typeArticle
dc.contributor.departmentMATHEMATICS
dc.description.doi10.1023/A:1013777203597
dc.description.sourcetitleComputational Optimization and Applications
dc.description.volume21
dc.description.issue3
dc.description.page301-310
dc.description.codenCPPPE
dc.identifier.isiut000173322100004
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.