Please use this identifier to cite or link to this item: https://doi.org/10.1109/97.917695
DC FieldValue
dc.titleA data-adaptive knot selection scheme for fitting splines
dc.contributor.authorHe, X.
dc.contributor.authorShen, L.
dc.contributor.authorShen, Z.
dc.date.accessioned2014-10-28T02:27:53Z
dc.date.available2014-10-28T02:27:53Z
dc.date.issued2001-05
dc.identifier.citationHe, X., Shen, L., Shen, Z. (2001-05). A data-adaptive knot selection scheme for fitting splines. IEEE Signal Processing Letters 8 (5) : 137-139. ScholarBank@NUS Repository. https://doi.org/10.1109/97.917695
dc.identifier.issn10709908
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/102631
dc.description.abstractA critical component of spline smoothing is the choice of knots, especially for curves with varying shapes and frequencies in its domain. We consider a two-stage knot selection scheme for adaptively fitting splines to data subject to noise. A potential set of knots is chosen based on information from certain wavelet decompositions with the intention of placing more points where the curve shows rapid changes. The final knot selection is then made based on statistical model selection ideas. We show that the proposed method is well suited for a variety of smoothing and noise filtering needs.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1109/97.917695
dc.sourceScopus
dc.subjectKnot
dc.subjectLeast squares
dc.subjectModel selection
dc.subjectSmoothing
dc.subjectSpline
dc.subjectWavelet decomposition
dc.typeArticle
dc.contributor.departmentMATHEMATICS
dc.description.doi10.1109/97.917695
dc.description.sourcetitleIEEE Signal Processing Letters
dc.description.volume8
dc.description.issue5
dc.description.page137-139
dc.description.codenISPLE
dc.identifier.isiut000168140900005
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.