Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.aim.2004.09.007
DC FieldValue
dc.titleA basis for the G Ln tensor product algebra
dc.contributor.authorHowe, R.E.
dc.contributor.authorTan, E.-C.
dc.contributor.authorWillenbring, J.F.
dc.date.accessioned2014-10-28T02:27:36Z
dc.date.available2014-10-28T02:27:36Z
dc.date.issued2005-10-01
dc.identifier.citationHowe, R.E., Tan, E.-C., Willenbring, J.F. (2005-10-01). A basis for the G Ln tensor product algebra. Advances in Mathematics 196 (2) : 531-564. ScholarBank@NUS Repository. https://doi.org/10.1016/j.aim.2004.09.007
dc.identifier.issn00018708
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/102604
dc.description.abstractThis paper focuses on the G Ln tensor product algebra, which encapsulates the decomposition of tensor products of arbitrary irreducible representations of G Ln. We will describe an explicit basis for this algebra. This construction relates directly with the combinatorial description of Littlewood-Richardson coefficients in terms of Littlewood-Richardson tableaux. Philosophically, one may view this construction as a recasting of the Littlewood-Richardson rule in the context of classical invariant theory. © 2004 Elsevier Inc. All rights reserved.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1016/j.aim.2004.09.007
dc.sourceScopus
dc.subjectBerenstein-Zelevinsky diagrams
dc.subjectLittlewood-Richardson coefficients
dc.subjectReciprocity algebra
dc.subjectSkew tableau
dc.subjectTensor product algebra
dc.typeArticle
dc.contributor.departmentMATHEMATICS
dc.description.doi10.1016/j.aim.2004.09.007
dc.description.sourcetitleAdvances in Mathematics
dc.description.volume196
dc.description.issue2
dc.description.page531-564
dc.identifier.isiut000231885200007
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.