Please use this identifier to cite or link to this item:
https://doi.org/10.1016/j.aim.2004.09.007
DC Field | Value | |
---|---|---|
dc.title | A basis for the G Ln tensor product algebra | |
dc.contributor.author | Howe, R.E. | |
dc.contributor.author | Tan, E.-C. | |
dc.contributor.author | Willenbring, J.F. | |
dc.date.accessioned | 2014-10-28T02:27:36Z | |
dc.date.available | 2014-10-28T02:27:36Z | |
dc.date.issued | 2005-10-01 | |
dc.identifier.citation | Howe, R.E., Tan, E.-C., Willenbring, J.F. (2005-10-01). A basis for the G Ln tensor product algebra. Advances in Mathematics 196 (2) : 531-564. ScholarBank@NUS Repository. https://doi.org/10.1016/j.aim.2004.09.007 | |
dc.identifier.issn | 00018708 | |
dc.identifier.uri | http://scholarbank.nus.edu.sg/handle/10635/102604 | |
dc.description.abstract | This paper focuses on the G Ln tensor product algebra, which encapsulates the decomposition of tensor products of arbitrary irreducible representations of G Ln. We will describe an explicit basis for this algebra. This construction relates directly with the combinatorial description of Littlewood-Richardson coefficients in terms of Littlewood-Richardson tableaux. Philosophically, one may view this construction as a recasting of the Littlewood-Richardson rule in the context of classical invariant theory. © 2004 Elsevier Inc. All rights reserved. | |
dc.description.uri | http://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1016/j.aim.2004.09.007 | |
dc.source | Scopus | |
dc.subject | Berenstein-Zelevinsky diagrams | |
dc.subject | Littlewood-Richardson coefficients | |
dc.subject | Reciprocity algebra | |
dc.subject | Skew tableau | |
dc.subject | Tensor product algebra | |
dc.type | Article | |
dc.contributor.department | MATHEMATICS | |
dc.description.doi | 10.1016/j.aim.2004.09.007 | |
dc.description.sourcetitle | Advances in Mathematics | |
dc.description.volume | 196 | |
dc.description.issue | 2 | |
dc.description.page | 531-564 | |
dc.identifier.isiut | 000231885200007 | |
Appears in Collections: | Staff Publications |
Show simple item record
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.