Please use this identifier to cite or link to this item: https://doi.org/10.1186/1471-2148-8-70
Title: Unusual accelerated rate of deletions and insertions in toxin genes in the venom glands of the pygmy copperhead (Austrelaps labialis) from kangaroo island
Authors: Doley, R. 
Tram, N.N.B.
Reza, Md.A.
Kini, R.M. 
Issue Date: 2008
Citation: Doley, R., Tram, N.N.B., Reza, Md.A., Kini, R.M. (2008). Unusual accelerated rate of deletions and insertions in toxin genes in the venom glands of the pygmy copperhead (Austrelaps labialis) from kangaroo island. BMC Evolutionary Biology 8 (1) : -. ScholarBank@NUS Repository. https://doi.org/10.1186/1471-2148-8-70
Abstract: Background. Toxin profiling helps in cataloguing the toxin present in the venom as well as in searching for novel toxins. The former helps in understanding potential pharmacological profile of the venom and evolution of toxins, while the latter contributes to understanding of novel mechanisms of toxicity and provide new research tools or prototypes of therapeutic agents. Results. The pygmy copperhead (Austrelaps labialis) is one of the less studied species. In this present study, an attempt has been made to describe the toxin profile of A. labialis from Kangaroo Island using the cDNA library of its venom glands. We sequenced 658 clones which represent the common families of toxin genes present in snake venom. They include (a) putative long-chain and short-chain neurotoxins, (b) phospholipase A2, (c) Kunitz-type protease inhibitor, (d) CRISPs, (e) C-type lectins and (f) Metalloproteases. In addition, we have also identified a novel protein with two Kunitz-type domains in tandem similar to bikunin. Conclusion. Interestingly, the cDNA library reveals that most of the toxin families (17 out of 43 toxin genes; ∼40%) have truncated transcripts due to insertion or deletion of nucleotides. These truncated products might not be functionally active proteins. However, cellular trancripts from the same venom glands are not affected. This unusual higher rate of deletion and insertion of nucleotide in toxin genes may be responsible for the lower toxicity of A. labialis venom of Kangroo Island and have significant effect on evolution of toxin genes. © 2008 Doley et al; licensee BioMed Central Ltd.
Source Title: BMC Evolutionary Biology
URI: http://scholarbank.nus.edu.sg/handle/10635/102117
ISSN: 14712148
DOI: 10.1186/1471-2148-8-70
Appears in Collections:Staff Publications
Elements

Show full item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
2008-unusual_accelerated_rate_deletions-published.pdf688.44 kBAdobe PDF

OPEN

PublishedView/Download

SCOPUSTM   
Citations

24
checked on Jan 14, 2021

WEB OF SCIENCETM
Citations

22
checked on Jan 14, 2021

Page view(s)

205
checked on Jan 17, 2021

Download(s)

2
checked on Jan 17, 2021

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.