Please use this identifier to cite or link to this item: https://doi.org/10.1128/MCB.25.14.6031-6046.2005
DC FieldValue
dc.titleReciprocal transcriptional regulation of Pou5f1 and Sox2 via the Oct4/Sox2 complex in embryonic stem cells
dc.contributor.authorChew, J.-L.
dc.contributor.authorLoh, Y.-H.
dc.contributor.authorZhang, W.
dc.contributor.authorChen, X.
dc.contributor.authorTam, W.-L.
dc.contributor.authorYeap, L.-S.
dc.contributor.authorLi, P.
dc.contributor.authorAng, Y.-S.
dc.contributor.authorLim, B.
dc.contributor.authorRobson, P.
dc.contributor.authorNg, H.-H.
dc.date.accessioned2014-10-27T08:38:13Z
dc.date.available2014-10-27T08:38:13Z
dc.date.issued2005-07
dc.identifier.citationChew, J.-L., Loh, Y.-H., Zhang, W., Chen, X., Tam, W.-L., Yeap, L.-S., Li, P., Ang, Y.-S., Lim, B., Robson, P., Ng, H.-H. (2005-07). Reciprocal transcriptional regulation of Pou5f1 and Sox2 via the Oct4/Sox2 complex in embryonic stem cells. Molecular and Cellular Biology 25 (14) : 6031-6046. ScholarBank@NUS Repository. https://doi.org/10.1128/MCB.25.14.6031-6046.2005
dc.identifier.issn02707306
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/101533
dc.description.abstractEmbryonic stem cells (ESCs) are pluripotent cells that can either self-renew or differentiate into many cell types. Oct4 and Sox2 are transcription factors essential to the pluripotent and self-renewing phenotypes of ESCs. Both factors are upstream in the hierarchy of the transcription regulatory network and are partners in regulating several ESC-specific genes. In ESCs, Sox2 is transcriptionally regulated by an enhancer containing a composite sox-oct element that Oct4 and Sox2 bind in a combinatorial interaction. It has previously been shown that Pou5f1, the Oct4 gene, contains a distal enhancer imparting specific expression in both ESCs and preimplantation embryos. Here, we identify a composite sox-oct element within this enhancer and show that it is involved in Pou5f1 transcriptional activity in ESCs. In vitro experiments with ESC nuclear extracts demonstrate that Oct4 and Sox2 interact specifically with this regulatory element. More importantly, by chromatin immunoprecipitation assay, we establish that both Oct4 and Sox2 bind directly to the composite sox-oct elements in both Pou5f1 and Sox2 in living mouse and human ESCs. Specific knockdown of either Oct4 or Sox2 by RNA interference leads to the reduction of both genes' enhancer activities and endogenous expression levels in addition to ESC differentiation. Our data uncover a positive and potentially self-reinforcing regulatory loop that maintains Pou5f1 and Sox2 expression via the Oct4/Sox2 complex in pluripotent cells. Copyright © 2005, American Society for Microbiology. All Rights Reserved.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1128/MCB.25.14.6031-6046.2005
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentBIOLOGICAL SCIENCES
dc.description.doi10.1128/MCB.25.14.6031-6046.2005
dc.description.sourcetitleMolecular and Cellular Biology
dc.description.volume25
dc.description.issue14
dc.description.page6031-6046
dc.description.codenMCEBD
dc.identifier.isiut000230267000021
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.