Full Name
Yue Yang
Yang, Yue
Yang, Y.
Yue, Y.
Main Affiliation


Results 1-20 of 24 (Search time: 0.008 seconds).

Issue DateTitleAuthor(s)
1Sep-1998∑2 Induction and infinite injury priority argument, Part I: Maximal sets and the jump operatorChong, C.T. ; Yang, Y. 
22001∑2 induction and infinite injury priority arguments, part III: Prompt sets, minimal pairs and shoenfield's conjectureChong, C.T. ; Qian, L.; Slaman, T.A.; Yang, Y. 
3Jul-2004A join theorem for the computably enumerable degreesJockusch Jr., C.G.; Li, A.; Yang, Y. 
415-Jul-1994A rank one cohesive setDowney, R.G.; Yue, Y. 
5Sep-2005Bounding and nonbounding minimal pairs in the enumeration degreesCooper, S.B.; Li, A.; Sorbi, A.; Yang, Y. 
6Aug-2006Bounding computably enumerable degrees in the Ershov hierarchyLi, A.; Wu, G.; Yang, Y. 
7Nov-2008Computable categoricity and the Ershov hierarchyKhoussainov, B.; Stephan, F. ; Yang, Y. 
8Oct-2010Diamond embeddings into the enumeration degreesSorbi, A.; Wu, G.; Yang, Y. 
92009High minimal pairs in the enumeration degreesSorbi, A.; Wu, G.; Yang, Y. 
10Mar-1995Iterated trees and fragments of arithmeticYang, Y. 
112006On differences among elementary theories of finite levels of Ershov hierarchiesYang, Y. ; Yu, L. 
12Mar-2005On the definable ideal generated by nonbounding c.e. degreesYu, L.; Yang, Y. 
13Mar-2010On the role of the collection principle for ∑2 0 -formulas in second-order reverse mathematicsChong, C.T. ; Lempp, S.; Yang, Y. 
14Dec-2006On Σ1-structural differences among finite levels of the Ershov hierarchyYang, Y. ; Yu, L.
152005Properly Σ 2 minimal degrees and 0″ complementationCooper, S.B.; Lewis, A.E.M.; Yang, Y. 
16Dec-2006Properly Σ2 0 enumeration degrees and the high/low hierarchyGiorgi, M.; Sorbi, A.; Yang, Y. 
172013Selection by recursively enumerable setsMerkle, W.; Stephan, F. ; Teutsch, J.; Wang, W.; Yang, Y. 
18Mar-2006The existence of high nonbounding degrees in the difference hierarchyChong, C.T. ; Li, A.; Yang, Y. 
19Jun-2007The jump of a Σn-cutChong, C.T. ; Yang, Y. 
202015The members of thin and minimal ?<inf>1</inf>0 classes, their ranks and Turing degreesDowney, Rod G.; Wu, Guohua; Yang, Yue