Please use this identifier to cite or link to this item: https://doi.org/10.1103/PhysRevB.80.205429
Title: Thermal expansion in single-walled carbon nanotubes and graphene: Nonequilibrium Green's function approach
Authors: Jiang, J.-W. 
Wang, J.-S. 
Li, B. 
Issue Date: 30-Nov-2009
Citation: Jiang, J.-W., Wang, J.-S., Li, B. (2009-11-30). Thermal expansion in single-walled carbon nanotubes and graphene: Nonequilibrium Green's function approach. Physical Review B - Condensed Matter and Materials Physics 80 (20) : -. ScholarBank@NUS Repository. https://doi.org/10.1103/PhysRevB.80.205429
Abstract: The nonequilibrium Green's function method is applied to investigate the coefficient of thermal expansion (CTE) in single-walled carbon nanotubes (SWCNT) and graphene. It is found that atoms expand about 1% from equilibrium positions even at T=0,K, resulting from the interplay between quantum zero-point motion and nonlinear interaction. The CTE in SWCNT of different sizes is studied and analyzed in terms of the competition between various vibration modes. As a result of this competition, the axial CTE is positive in the whole temperature range, while the radial CTE is negative at low temperatures. In graphene, the CTE is very sensitive to the substrate. Without substrate, CTE has large negative region at low temperatures and very small value at high-temperature limit, and the value of CTE at 300 K is -6× 10-6 , K -1 which is very close to a recent experimental result, -7× 10-6 , K-1. A very weak substrate interaction (about 0.06% of the in-plane interaction) can largely reduce the negative CTE region and greatly enhance the value of CTE. If the substrate interaction is strong enough, the CTE will be positive in whole temperature range and the saturate value at high temperatures reaches 2.0× 10-5 , K-1. © 2009 The American Physical Society.
Source Title: Physical Review B - Condensed Matter and Materials Physics
URI: http://scholarbank.nus.edu.sg/handle/10635/98357
ISSN: 10980121
DOI: 10.1103/PhysRevB.80.205429
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

131
checked on Nov 13, 2018

WEB OF SCIENCETM
Citations

119
checked on Nov 5, 2018

Page view(s)

32
checked on Aug 3, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.