Please use this identifier to cite or link to this item: https://doi.org/10.1016/S0378-4371(01)00613-6
Title: Microscopic chaos and Gaussian diffusion processes
Authors: Chew, L.Y.
Ting, C. 
Keywords: Brownian motion
Chaos
Einstein's diffusion
Equipartition theorem
Gaussian diffusion process
Green-Kubo relation
Non-Ornstein-Uhlenbeck process
Issue Date: 1-May-2002
Citation: Chew, L.Y., Ting, C. (2002-05-01). Microscopic chaos and Gaussian diffusion processes. Physica A: Statistical Mechanics and its Applications 307 (3-4) : 275-296. ScholarBank@NUS Repository. https://doi.org/10.1016/S0378-4371(01)00613-6
Abstract: In this paper, we construct and analyze a prototypical model of microscopic chaos. In particular, we extend the results of Beck and Shimizu to the case where the microscopic time scale τ is no longer small. The upshot is that a non-Ornstein-Uhlenbeck deterministic process can generate a Gaussian diffusion process. © 2002 Elsevier Science B.V. All rights reserved.
Source Title: Physica A: Statistical Mechanics and its Applications
URI: http://scholarbank.nus.edu.sg/handle/10635/97206
ISSN: 03784371
DOI: 10.1016/S0378-4371(01)00613-6
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.