Please use this identifier to cite or link to this item:
Title: Integrable hierarchies and information measures
Authors: Parwani, R.R. 
Pashaev, O.K.
Issue Date: 3-Jun-2008
Citation: Parwani, R.R., Pashaev, O.K. (2008-06-03). Integrable hierarchies and information measures. Journal of Physics A: Mathematical and Theoretical 41 (23) : -. ScholarBank@NUS Repository.
Abstract: In this paper we investigate integrable models from the perspective of information theory, exhibiting various connections. We begin by showing that compressible hydrodynamics for a one-dimensional isentropic fluid, with an appropriately motivated information theoretic extension, is described by a general nonlinear Schrödinger (NLS) equation. Depending on the choice of the enthalpy function, one obtains the cubic NLS or other modified NLS equations that have applications in various fields. Next, by considering the integrable hierarchy associated with the NLS model, we propose higher order information measures which include the Fisher measure as their first member. The lowest members of the hierarchy are shown to be included in the expansion of a regularized Kullback-Leibler measure while, on the other hand, a suitable combination of the NLS hierarchy leads to a Wootters type measure related to a NLS equation with a relativistic dispersion relation. Finally, through our approach, we are led to construct integrable relativistic NLS equations. © 2008 IOP Publishing Ltd.
Source Title: Journal of Physics A: Mathematical and Theoretical
ISSN: 17518113
DOI: 10.1088/1751-8113/41/23/235207
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.


checked on Feb 13, 2019


checked on Feb 13, 2019

Page view(s)

checked on Nov 23, 2018

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.