Please use this identifier to cite or link to this item:
https://doi.org/10.1080/09500830050134354
Title: | Fractal growth of graphite nodules in iron | Authors: | Li, J. Lu, L. Lai, M.O. |
Issue Date: | Sep-2000 | Citation: | Li, J., Lu, L., Lai, M.O. (2000-09). Fractal growth of graphite nodules in iron. Philosophical Magazine Letters 80 (9) : 633-640. ScholarBank@NUS Repository. https://doi.org/10.1080/09500830050134354 | Abstract: | It has been found from a large number of statistical tests that graphite nodules in malleable iron grow with time according to a power law. The growth of the nodules and their fractal dimension have been investigated experimentally as a function of annealing time. Based on the assumption of carbon-diffusion-controlled growth in the initial stage, the growth equation is RG = K1t1/(D-1), where RG is the radius of the graphite nodules, t the time, D the fractal dimension and K1 a constant. Assuming cementite-dissolution-controlled growth in the later stages of growth, the relation is RG = K3t3/D, where K3 is a constant. The fractal dimension, or the aggregate state of the graphite nodules, strongly influences the growth process. | Source Title: | Philosophical Magazine Letters | URI: | http://scholarbank.nus.edu.sg/handle/10635/92711 | ISSN: | 09500839 | DOI: | 10.1080/09500830050134354 |
Appears in Collections: | Staff Publications |
Show full item record
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.