Please use this identifier to cite or link to this item:
https://scholarbank.nus.edu.sg/handle/10635/91406
Title: | Catalytic carbon monoxide oxidation over strontium, cerium and copper-substituted lanthanum manganates and cobaltates | Authors: | Chan, K.S. Ma, J. Jaenicke, S. Chuah, G.K. Lee, J.Y. |
Keywords: | (La,Sr)MnO3 (La/Sr)CoO3 and (La/Ce)CoO3 carbon monoxide oxidation La(Mn/Cu)O3 oxygen mobility perovskites steady-state multiplicity |
Issue Date: | 6-Jan-1994 | Citation: | Chan, K.S.,Ma, J.,Jaenicke, S.,Chuah, G.K.,Lee, J.Y. (1994-01-06). Catalytic carbon monoxide oxidation over strontium, cerium and copper-substituted lanthanum manganates and cobaltates. Applied Catalysis A, General 107 (2) : 201-227. ScholarBank@NUS Repository. | Abstract: | The influence of either A or B-site substitution in perovskite-type mixed oxides on the catalytic oxidation of carbon monoxide has been studied. The following systems were investigated: (La,Sr) MnO3, La(Mn,Cu)O3, (La,Sr)CoO3 and (La,Ce)CoO3. Cobaltates are generally more active than the manganates. Substitution in the A or B-site improved the catalytic activity with oxidation starting from 75 °C. A volcano plot of activity versus composition was obtained for each series with up to a 10-fold increase in catalytic activity for the substituted compounds. Lattice oxygen participates in the reaction even under stoichiometric conditions. The catalysts show a positive rate dependence on the carbon monoxide partial pressure so that under reducing conditions, the reaction is not inhibited. A bistability in the rate of catalytic oxidation at high carbon monoxide concentration was observed over La1-xSrxMnO3 and LaMn1-xCuxO3 (0≤x≤0.2). This bistability has been attributed to a carbon monoxide-driven reconstruction of the reduced surface, leading to pairs of Mn2 ions with a Mn-Mn distance comparable to the spacing in the metal. These pairs provide reactive sites for carbon monoxide oxidation and oxygen chemisorption. Such metal-metal pairs are not found in the perovskite lattice but are a structural feature of the closely related hexagonal 4-layered packing which is the normal crystal structure of SrMnO3. The change back to the less active state is due to reoxidation of the surface. It was confirmed that a low mobility of lattice oxygen is a necessary condition for hysteresis in these oxides. © 1994. | Source Title: | Applied Catalysis A, General | URI: | http://scholarbank.nus.edu.sg/handle/10635/91406 | ISSN: | 0926860X |
Appears in Collections: | Staff Publications |
Show full item record
Files in This Item:
There are no files associated with this item.
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.