Please use this identifier to cite or link to this item: https://doi.org/10.1002/nag.2171
Title: Preconditioned IDR(s) iterative solver for non-symmetric linear system associated with FEM analysis of shallow foundation
Authors: Tran, H.H.T.
Toh, K.C. 
Phoon, K.K. 
Keywords: Induced dimension reduction
Non-associated
Non-symmetric linear system
Plasticity
Preconditioning
Issue Date: 10-Dec-2013
Citation: Tran, H.H.T., Toh, K.C., Phoon, K.K. (2013-12-10). Preconditioned IDR(s) iterative solver for non-symmetric linear system associated with FEM analysis of shallow foundation. International Journal for Numerical and Analytical Methods in Geomechanics 37 (17) : 2972-2986. ScholarBank@NUS Repository. https://doi.org/10.1002/nag.2171
Abstract: Non-associated flow rule is essential when the popular Mohr-Coulomb model is used to model nonlinear behavior of soil. The global tangent stiffness matrix in nonlinear finite element analysis becomes non-symmetric when this non-associated flow rule is applied. Efficient solution of this large-scale non-symmetric linear system is of practical importance. The standard Krylov solver for a non-symmetric solver is Bi-CGSTAB. The Induced Dimension Reduction [IDR(s)] solver was proposed in the scientific computing literature relatively recently. Numerical studies of a drained strip footing problem on homogenous soil layer show that IDR(s=6) is more efficient than Bi-CGSTAB when the preconditioner is the incomplete factorization with zero fill-in of global stiffness matrix Kep (ILU(0)-Kep). Iteration time is reduced by 40% by using IDR(s=6) with ILU(0)-Kep. To further reduce computational cost, the global stiffness matrix Kep is divided into two parts. The first part is the linear elastic stiffness matrix Ke, which is formed only once at the beginning of solution step. The second part is a low-rank matrix Δ, which is re-formed at each Newton-Raphson iteration. Numerical studies show that IDR(s=6) with this ILU(0)-Ke preconditioner is more time effective than IDR(s=6) with ILU(0)-Kep when the percentage of yielded Gauss points in the mesh is less than 15%. The total computation time is reduced by 60% when all the recommended optimizing methods are used. © 2013 John Wiley & Sons, Ltd.
Source Title: International Journal for Numerical and Analytical Methods in Geomechanics
URI: http://scholarbank.nus.edu.sg/handle/10635/91147
ISSN: 03639061
DOI: 10.1002/nag.2171
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.