Please use this identifier to cite or link to this item: https://doi.org/10.1205/cherd.04206
Title: Vapour-liquid equilibrium of water/ethanol/1-butanol/salt: Prediction and experimental verification
Authors: Tan, T.C. 
Gan, S.H.
Keywords: Experimental verification
Model prediction
Salt effect
Vapour-liquid equilibrium
Water/ethanol/1-butanol
Issue Date: Dec-2005
Citation: Tan, T.C., Gan, S.H. (2005-12). Vapour-liquid equilibrium of water/ethanol/1-butanol/salt: Prediction and experimental verification. Chemical Engineering Research and Design 83 (12 A) : 1361-1371. ScholarBank@NUS Repository. https://doi.org/10.1205/cherd.04206
Abstract: Experimental vapour-liquid equilibrium data of water/ethanol/1-butanol saturated with NaCl, KCl and NH4Cl compared well with those predicted by Tan-Wilson and Tan-NRTL models for multicomponent solvent-solute mixture. The Wilson and NRTL solvent-solvent interaction parameters were obtained by the regression of the experimental vapour-liquid equilibrium data of the salt-free solvent mixture. The solute-solvent interaction parameters were calculated from the experimental bubble points of the individual solvent components saturated with the respective salts. Water was significantly salted-into the liquid phase by all the three salts giving a vapour phase rich in organic solvent components and a liquid phase rich in water. Both NaCl and NH4Cl showed little or no preference in salting-out the two organic solvent components while KCl showed preferential salting-out of ethanol. These results are consistent with previous reports that solvent component i would be salted-in or out of the liquid phase relative to solvent component j depending on whether the ratio of the solute-solvent interaction parameter, Asj/Asi (Tan-Wilson model) or exp(Tis - Tjs) (Tan-NRTL model) is less than or greater than 1. These findings show that the two models describe reasonably well the effect of salts on the liquid-phase activity coefficient of the solvent components in a ternary solvent mixture. The criteria and the rapid screening method proposed by Tan on the selection of a suitable non-volatile soluble solute for the elimination of azeotropes and for the salt distillation of close-boiling and azeotropic binary solvent mixtures are therefore equally applicable to ternary solvent mixture. © 2005 Institution of Chemical Engineers.
Source Title: Chemical Engineering Research and Design
URI: http://scholarbank.nus.edu.sg/handle/10635/90472
ISSN: 02638762
DOI: 10.1205/cherd.04206
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.