Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.memsci.2004.12.026
Title: Study and characterization of the hysteresis behavior of polyimide membranes in the thermal cycle process of pervaporation separation
Authors: Guo, W.F.
Chung, T.-S. 
Keywords: Hysteresis behavior
Membranes
Pervaporation
Polyimide
Thermal cycle
Issue Date: 5-May-2005
Citation: Guo, W.F., Chung, T.-S. (2005-05-05). Study and characterization of the hysteresis behavior of polyimide membranes in the thermal cycle process of pervaporation separation. Journal of Membrane Science 253 (1-2) : 13-22. ScholarBank@NUS Repository. https://doi.org/10.1016/j.memsci.2004.12.026
Abstract: The thermal hysteresis behavior of Matrimid® 5218 polyimide membranes in the pervaporation of a tert-butanol and water mixture containing 85 wt.% tert-butanol was investigated. The membrane flux decreases while separation factor increases after the thermal cycle process. The percentage changes of flux and separation factor after cycle are strongly path-dependent. Membrane starting from a high temperature has a more stable performance than that from a low temperature. Three factors play important roles in the hysteresis behavior; namely, interactions between feed molecules and membrane, non-equilibrium nature of dense-selective skin, and asymmetric membrane swelling. As a result, the collapse of micro-porous structure underneath the dense-selective skin and the thickening of the dense-selective skin were observed by SEM pictures after pervaporation. The d-space value measured by WXRD also indicates a reduced interstitial chain space after pervaporation, suggesting a thermal and solvent induced densification. Similar to the asymmetric membranes, a higher flux and separation factor was obtained at 100°C if a dense membrane was tested starting from a low temperature. The interesting behavior may arise from a greater relaxation of polymer chains and an easier cooperative packing of benzene rings induced by the penetrant molecules. As a result, the membrane treated at 100°C has a narrower interstitial chain space and possesses a higher selectivity towards larger molecules transportation. The narrower interstitial chain space and a higher selectivity observed at high temperature may be due to the loss of local chain rigidity and straightness resulting from the nature of Matrimid. © 2005 Elsevier B.V. All rights reserved.
Source Title: Journal of Membrane Science
URI: http://scholarbank.nus.edu.sg/handle/10635/90218
ISSN: 03767388
DOI: 10.1016/j.memsci.2004.12.026
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.