Please use this identifier to cite or link to this item: https://doi.org/10.1021/es4013917
Title: Highly robust thin-film composite pressure retarded osmosis (PRO) hollow fiber membranes with high power densities for renewable salinity-gradient energy generation
Authors: Han, G.
Wang, P.
Chung, T.-S. 
Issue Date: 16-Jul-2013
Citation: Han, G., Wang, P., Chung, T.-S. (2013-07-16). Highly robust thin-film composite pressure retarded osmosis (PRO) hollow fiber membranes with high power densities for renewable salinity-gradient energy generation. Environmental Science and Technology 47 (14) : 8070-8077. ScholarBank@NUS Repository. https://doi.org/10.1021/es4013917
Abstract: The practical application of pressure retarded osmosis (PRO) technology for renewable blue energy (i.e., osmotic power generation) from salinity gradient is being hindered by the absence of effective membranes. Compared to flat-sheet membranes, membranes with a hollow fiber configuration are of great interest due to their high packing density and spacer-free module fabrication. However, the development of PRO hollow fiber membranes is still in its infancy. This study aims to open up new perspectives and design strategies to molecularly construct highly robust thin film composite (TFC) PRO hollow fiber membranes with high power densities. The newly developed TFC PRO membranes consist of a selective polyamide skin formed on the lumen side of well-constructed Matrimid hollow fiber supports via interfacial polymerization. For the first time, laboratory PRO power generation tests demonstrate that the newly developed PRO hollow fiber membranes can withstand trans-membrane pressures up to 16 bar and exhibit a peak power density as high as 14 W/m2 using seawater brine (1.0 M NaCl) as the draw solution and deionized water as the feed. We believe that the developed TFC PRO hollow fiber membranes have great potential for osmotic power harvesting. © 2013 American Chemical Society.
Source Title: Environmental Science and Technology
URI: http://scholarbank.nus.edu.sg/handle/10635/89110
ISSN: 0013936X
DOI: 10.1021/es4013917
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

71
checked on Jul 12, 2018

WEB OF SCIENCETM
Citations

67
checked on Jun 6, 2018

Page view(s)

44
checked on Jun 22, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.