Please use this identifier to cite or link to this item: https://doi.org/10.1039/c2gc16354c
Title: High performance membranes based on ionic liquid polymers for CO 2 separation from the flue gas
Authors: Li, P.
Paul, D.R.
Chung, T.-S. 
Issue Date: Apr-2012
Source: Li, P., Paul, D.R., Chung, T.-S. (2012-04). High performance membranes based on ionic liquid polymers for CO 2 separation from the flue gas. Green Chemistry 14 (4) : 1052-1063. ScholarBank@NUS Repository. https://doi.org/10.1039/c2gc16354c
Abstract: Three vinyl functionalized imidazolium based room-temperature ionic liquids (RTILs): 1-vinyl-3-ethylimidazolium dicyanamide ([veim][dca]), 1-vinyl-3-butylimidazolium dicyanamide ([vbim][dca]) and 1-vinyl-3- heptylimidazolium dicyanamide ([vhim][dca]) were synthesized and UV-polymerized to form free standing membranes. The pure gas permeabilities of CO 2 and N 2 of these newly developed membranes acquired at 1 atm 35 °C increased with an increase in the number of N-alkyl group in the monomers but their ideal CO 2-N 2 selectivities decreased. The three vinyl functionalized monomers were blended with three free RTILs: 1-ethyl-3-methylimidazolium dicyanamide ([emim][dca]), 1-ethyl-3- methylimidazolium tetracyanoborate ([emim][B(CN) 4]) and 1-ethyl-3-methylimidazolium tetrafluoroborate ([emim][BF 4]) and subsequently subjected to UV-polymerization to form the poly(RTIL)-RTIL composite membranes. The incorporation of free RTILs not only significantly increases the CO 2 permeability but also greatly improves the CO 2-N 2 selectivity. The best separation performance is achieved for the poly([vbim][dca])-[emim][B(CN) 4] (1:2) and poly([vbim][dca])-[emim][dca] (1:2) composite membranes, which have CO 2 permeabilities of 340 and 273 barrers and CO 2-N 2 selectivities of 42 and 53, respectively, at 1 atm 35 °C. The mixed gas permeabilities of these two composite membranes are 297 and 253.5 barrers with corresponding CO 2-N 2 selectivities of 38.8 and 50.6, respectively, using a 50:50 CO 2-N 2 mixed gas at 2 atm 35 °C. These two composite membranes have separation performance very close to the 2008 "Robeson Upper Bound", suggesting their potential for industrial applications, especially for the post-combustion flue gas treatment. © 2012 The Royal Society of Chemistry.
Source Title: Green Chemistry
URI: http://scholarbank.nus.edu.sg/handle/10635/89078
ISSN: 14639262
DOI: 10.1039/c2gc16354c
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

101
checked on Feb 13, 2018

WEB OF SCIENCETM
Citations

96
checked on Feb 13, 2018

Page view(s)

39
checked on Feb 20, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.