Please use this identifier to cite or link to this item: https://doi.org/10.1002/adsc.200505439
Title: Efficient NADPH recycling in enantioselective bioreduction of a ketone with permeabilized cells of a microorganism containing a ketoreductase and a glucose 6-phosphate dehydrogenase
Authors: Zhang, J.
Witholt, B.
Li, Z. 
Keywords: Cofactor recycling
Enzyme catalysis
Glucose 6-phosphate dehydrogenase
Ketoreductase
Permeabilized cells
Reduction
Issue Date: Mar-2006
Citation: Zhang, J., Witholt, B., Li, Z. (2006-03). Efficient NADPH recycling in enantioselective bioreduction of a ketone with permeabilized cells of a microorganism containing a ketoreductase and a glucose 6-phosphate dehydrogenase. Advanced Synthesis and Catalysis 348 (4-5) : 429-433. ScholarBank@NUS Repository. https://doi.org/10.1002/adsc.200505439
Abstract: We have demonstrated, for the first time, the efficient recycling of NADPH in a bioreduction with permeabilized cells of a single microorganism. Permeabilized cells of Bacillus pumilus Phe-C3 containing an NADPH-dependent ketoreductase and a glucose 6-phosphate dehydrogenase (G-6-PDH) were successfully used for the reduction of ethyl 3-oxo-4,4,4-trifluorobutanoate (1) to give (R)-ethyl 3-hydroxy-4,4,4-trifluorobutanoate (2) in 95% ee with the recycling of NADPH for 4220 times from the externally added NADP+. The permeabilized cells were shown to be stable and active for a long period, allowing for high product concentration with high cofactor TTN by continuing the bioreduction with renewed addition of NADP+. This provides with not only a practical synthesis of (R)-2 but also a useful method applicable to many microbial oxidoreductions, since G-6-PDH is a very common enzyme existing in many microorganisms. © 2006 Wiley-VCH Verlag GmbH & Co. KGaA.
Source Title: Advanced Synthesis and Catalysis
URI: http://scholarbank.nus.edu.sg/handle/10635/88821
ISSN: 16154150
DOI: 10.1002/adsc.200505439
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.