Please use this identifier to cite or link to this item: https://doi.org/10.1039/c3ra42213e
Title: Crucial role of blocking inaccessible cages in the simulation of gas adsorption in a paddle-wheel metal-organic framework
Authors: Zhang, K.
Nalaparaju, A.
Chen, Y.
Jiang, J. 
Issue Date: 28-Sep-2013
Source: Zhang, K., Nalaparaju, A., Chen, Y., Jiang, J. (2013-09-28). Crucial role of blocking inaccessible cages in the simulation of gas adsorption in a paddle-wheel metal-organic framework. RSC Advances 3 (36) : 16152-16158. ScholarBank@NUS Repository. https://doi.org/10.1039/c3ra42213e
Abstract: A molecular simulation study is reported to investigate the adsorption of CO2 and H2 in a recently synthesized paddle-wheel Cu-based metal-organic framework (Cu-MOF). The Cu-MOF consists of three types of cages; the type-III cages are restricted by narrow windows and inaccessible to gas molecules. By blocking the inaccessible type-III cages, the simulated adsorption isotherms for pure CO2 and H2 agree well with experimental data. Ideal-adsorbed solution theory (IAST) is used to predict the adsorption of a CO2/H2 mixture, and the predicted isotherms and selectivities are consistent with simulated results. Furthermore, the breakthrough profiles are evaluated for a CO2/H2 mixture in a fixed-bed packed with the Cu-MOF. The breakthrough times are estimated to be 2.8 and 85.2 for H2 and CO2, respectively, implying the efficient separation of the CO2/H2 mixture. The simulation study reveals the crucial role of blocking inaccessible cages in the proper simulation of gas adsorption in the Cu-MOF, and the capability of IAST applied to the Cu-MOF with inaccessible cages. © 2013 The Royal Society of Chemistry.
Source Title: RSC Advances
URI: http://scholarbank.nus.edu.sg/handle/10635/88723
ISSN: 20462069
DOI: 10.1039/c3ra42213e
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

8
checked on Feb 15, 2018

WEB OF SCIENCETM
Citations

8
checked on Jan 29, 2018

Page view(s)

24
checked on Feb 19, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.