Please use this identifier to cite or link to this item: https://doi.org/10.3155/1047-3289.58.8.1077
Title: Effects of driving conditions on diesel exhaust particulates
Authors: Lim, J.
Yu, L.E. 
Kostetski, Y.Y. 
Lim, C.
Ryu, J.
Kim, J.
Issue Date: Aug-2008
Source: Lim, J., Yu, L.E., Kostetski, Y.Y., Lim, C., Ryu, J., Kim, J. (2008-08). Effects of driving conditions on diesel exhaust particulates. Journal of the Air and Waste Management Association 58 (8) : 1077-1085. ScholarBank@NUS Repository. https://doi.org/10.3155/1047-3289.58.8.1077
Abstract: Four driving conditions were examined to characterize how speeds and loads of a medium-duty diesel engine affect resultant diesel exhaust particulates (DEPs) in terms of number concentrations (≤400 nm), size distribution, persistent free radicals, elemental carbon (EC), and organic carbon (OC). At the medium engine load (60%), DEPs surged in number concentrations at around 40-70 nm, whereas DEPs from the full engine load (100%) showed a distinctive bimodal distribution with a large population of 30-50 nm and 100-400 nm. Under the full engine load, engine speeds insignificantly affected resultant DEP number concentrations. When the engine load decreased from 100% to the medium level (60%), DEPs of ultrafine size and 100-400 nm decreased at least 1.4 times (from 5.6 × 108 to 4 × 108 #/cm3) and more than 3 times (from 2.7 × 108 to 0.8 × 108 #/cm3), respectively. The same reduction in the engine load significantly decreased persistent free radicals in DEPs up to approximately 30 times (from 123 × 1016 to 4 × 1016 #spin/g). Decreasing the engine load from 100 to 60% also concurrently reduced both EC and OC in total DEPs around 2 times, from 27.3 to 13.9 mg/m3, and from 17.6 to 9.2 mg/m3, respectively. For DEPs smaller than 1 μm, under the full engine load, EC and OC consistently peaked at 170-330 nm under an engine speed of 1800 rpm or 94-170 nm under an engine speed of 3000 rpm, reflecting processes of nucleation, cluster-cluster agglomeration, and condensation. Decreasing the engine load from 100 to 60% reduced EC and OC in DEPs (smaller than 1 μm) at least 3 times (0.6 to 0.2 mg/m3) and 2 times (0.4 to 0.2 mg/m3), respectively. Taken together, decreasing the full engine load to a medium (60%) level effectively reduced the number concentrations (≤400 nm), persistent free radicals, EC, and OC of total DEPs, as well as the concentration of EC and OC in ultrafine and accumulation-mode DEPs. Copyright 2008 Air & Waste Management Association.
Source Title: Journal of the Air and Waste Management Association
URI: http://scholarbank.nus.edu.sg/handle/10635/87495
ISSN: 10473289
DOI: 10.3155/1047-3289.58.8.1077
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

14
checked on Feb 15, 2018

WEB OF SCIENCETM
Citations

14
checked on Feb 5, 2018

Page view(s)

28
checked on Feb 19, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.