Please use this identifier to cite or link to this item: https://doi.org/10.1021/jp911310r
Title: ZnCdO/ZnO coaxial multiple quantum well nanowire heterostructures and optical properties
Authors: Cheng, C.
Liu, B.
Sie, E.J.
Zhou, W.
Zhang, J. 
Gong, H. 
Alfred Huan, C.H.
Sum, T.C.
Sun, H.
Fan, H.J.
Issue Date: 11-Mar-2010
Source: Cheng, C., Liu, B., Sie, E.J., Zhou, W., Zhang, J., Gong, H., Alfred Huan, C.H., Sum, T.C., Sun, H., Fan, H.J. (2010-03-11). ZnCdO/ZnO coaxial multiple quantum well nanowire heterostructures and optical properties. Journal of Physical Chemistry C 114 (9) : 3863-3868. ScholarBank@NUS Repository. https://doi.org/10.1021/jp911310r
Abstract: High quality vertical-aligned arrays of ZnCdO/ZnO coaxial multiple-quantum-well (MQW) nanowire heterostructures are fabricated for the first time by combining a simple chemical vapor deposition (CVD) and pulsed laser deposition (PLD) method. The ZnO nanowire core enables epitaxial and dislocation-free growth of uniform ZnCdO/ZnO quantum wells. Both steady-state and time-resolved photoluminescence measurements of the MQW nanowires are performed in the temperature range of 10-300 K. Strong quantum confinement and carrier localization effect are verified. In addition, an S-shaped temperature dependence is observed for both the exciton emission energy (Ep) and their lifetime in ZnCdO MQWs, which has not previously been reported in ZnMgO MQWs. A simple phenomenological model was introduced to explain this anomalous behavior. Such ZnCdO/ZnO coaxial MQW nanowires might find applications in nanoscale laser sources and other oxide-based quantum devices. © 2010 American Chemical Society.
Source Title: Journal of Physical Chemistry C
URI: http://scholarbank.nus.edu.sg/handle/10635/86849
ISSN: 19327447
DOI: 10.1021/jp911310r
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

26
checked on Mar 14, 2018

WEB OF SCIENCETM
Citations

24
checked on Mar 14, 2018

Page view(s)

44
checked on Mar 11, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.