Please use this identifier to cite or link to this item: https://doi.org/10.1002/adma.201204135
Title: Room-temperature ferromagnetism in ZnO-encapsulated 1.9 nm FePt3 nanoparticle-composite thin films with giant interfacial anisotropy
Authors: Shen, L. 
Zhou, T.
Wee, R.Q.
Cher, K.M.
Ko, H.Y.Y.
Niu, R.
Gong, H. 
Yuan, Z.
Liu, B.
Feng, Y.P. 
Keywords: FePt/ZnO
giant interfacial anisotropy
permanent (hard) ferromagnetism
spin-orbit interaction
superparamagnetic
Issue Date: 20-Mar-2013
Citation: Shen, L., Zhou, T., Wee, R.Q., Cher, K.M., Ko, H.Y.Y., Niu, R., Gong, H., Yuan, Z., Liu, B., Feng, Y.P. (2013-03-20). Room-temperature ferromagnetism in ZnO-encapsulated 1.9 nm FePt3 nanoparticle-composite thin films with giant interfacial anisotropy. Advanced Materials 25 (11) : 1639-1645. ScholarBank@NUS Repository. https://doi.org/10.1002/adma.201204135
Abstract: As synthesized 1.9-nm FePt3 nanoparticles are superparamagnetic at room temperature. Coating those nanoparticles with ZnO renders them permanently ferromagnetic with coercivity field of 650 Oe at room temperature. First-principles calculations indicate that giant interfacial anisotropy, induced by the strong spin-orbit interaction of enhanced orbit momentum of Fe, overcomes the superparamagnetic limit, leading to exceptional room-temperature permanent ferromagnetism. The findings are important for the understanding of the origin of permanent ferromagnetism at ultrasmall size and critical for ultrahigh density recording and information processing. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Source Title: Advanced Materials
URI: http://scholarbank.nus.edu.sg/handle/10635/86687
ISSN: 09359648
DOI: 10.1002/adma.201204135
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.