Please use this identifier to cite or link to this item: https://doi.org/10.1109/TUFFC.2012.2151
Title: Multiferroic and fatigue behavior of BiFe 0.95Mn 0.05O 3/Bi 0.90La 0.10Fe 0.85Zn 0.15O 3 bilayered thin films
Authors: Wu, J.
Wang, J. 
Xiao, D.
Zhu, J.
Issue Date: Jan-2012
Citation: Wu, J., Wang, J., Xiao, D., Zhu, J. (2012-01). Multiferroic and fatigue behavior of BiFe 0.95Mn 0.05O 3/Bi 0.90La 0.10Fe 0.85Zn 0.15O 3 bilayered thin films. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 59 (1) : 14-20. ScholarBank@NUS Repository. https://doi.org/10.1109/TUFFC.2012.2151
Abstract: Bilayered thin films consisting of BiFe 0.95Mn 0.05O 3 (BFMO) and Bi 0.90La 0.10Fe 0.85Zn 0.15O 3 (BLFZO) layers were prepared on Pt-coated silicon substrates without any buffer layers by RF sputtering. The (110) orientation was induced with a high phase purity for all bilayers as a result of the introduction of the bottom (110)-oriented BLFZO layer. The low leakage current density of BFMO/BLFZO bilayers could be attributed to a combined effect of the BFMO and BLFZO layers. The dielectric constant increases, the remanent polarization decreases, and the coercive field slightly increases with increasing thickness of the BLFZO layer in BFMO/BLFZO bilayers. Magnetic properties in BFMO/BLFZO bilayers are improved by increasing the BFMO layer thicknesses. A large polarization value of 2P r ~ 189.5 μC/cm 2 is obtained for the BFMO/ BLFZO bilayer with a thickness ratio of 3:1, which is much larger than those reported for BFO-based single layers or multilayers, and a good fatigue behavior is demonstrated with an increase in measurement frequencies and driving electric fields. © 2012 IEEE.
Source Title: IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control
URI: http://scholarbank.nus.edu.sg/handle/10635/86570
ISSN: 08853010
DOI: 10.1109/TUFFC.2012.2151
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.