Please use this identifier to cite or link to this item: https://doi.org/10.1039/c1ee02475b
Title: Highly conductive poly(3,4-ethylenedioxythiophene):Poly(styrene sulfonate) films treated with an amphiphilic fluoro compound as the transparent electrode of polymer solar cells
Authors: Xia, Y. 
Sun, K.
Ouyang, J. 
Issue Date: Jan-2012
Citation: Xia, Y., Sun, K., Ouyang, J. (2012-01). Highly conductive poly(3,4-ethylenedioxythiophene):Poly(styrene sulfonate) films treated with an amphiphilic fluoro compound as the transparent electrode of polymer solar cells. Energy and Environmental Science 5 (1) : 5325-5332. ScholarBank@NUS Repository. https://doi.org/10.1039/c1ee02475b
Abstract: Flexible transparent electrode materials are strongly needed for optoelectronic devices. We report a novel method to significantly enhance the conductivity of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) films through treatment with a fluoro compound, hexafluoroacetone (HFA). HFA hydrolyzes with water into a geminal diol, 1,1,1,3,3,3- hexafluoropropane-2,2-diol (HFP2OH) that has two -OH groups connected to the middle carbon atom. The conductivity increased from 0.3 to 1164 and 1325 S cm -1 after the treatment with HFA once and four times, respectively. The highly conductive HFA-treated PEDOT:PSS films can have a sheet resistances of 46 Ω □ -1 and a transparency of around 83% at 550 nm. These values are comparable to those of indium tin oxide (ITO) on polyethylene terephthalate (PET). The conductivity enhancement is attributed to the HFP2OH-induced phase segregation of some hydrophilic PSSH chains from PEDOT:PSS and the conformational change of the conductive PEDOT chains, driven by the interactions between amphiphilic HFP2OH and PEDOT:PSS. The hydrophobic -CF 3 groups of HFP2OH preferentially interact with the hydrophobic PEDOT chains of PEDOT:PSS, while the hydrophilic -OH groups preferentially interact with hydrophilic PSS chains. The highly conductive PEDOT:PSS films were used to replace ITO as the transparent anode of polymer solar cells. Polymer solar cells based on poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C 61-butyric acid methyl ester (PCBM) exhibited a photovoltaic efficiency of 3.57% under simulated AM1.5G illumination, comparable to the control devices with ITO as the anode. © 2011 The Royal Society of Chemistry.
Source Title: Energy and Environmental Science
URI: http://scholarbank.nus.edu.sg/handle/10635/86408
ISSN: 17545692
DOI: 10.1039/c1ee02475b
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

132
checked on Nov 14, 2018

WEB OF SCIENCETM
Citations

128
checked on Nov 6, 2018

Page view(s)

35
checked on Nov 2, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.