Please use this identifier to cite or link to this item: https://doi.org/10.1002/adfm.201000603
Title: Electrically adjustable, super adhesive force of a superhydrophobic aligned MnO2 nanotube membrane
Authors: Zhao, X.-D.
Fan, H.-M. 
Luo, J.
Ding, J.
Liu, X.-Y. 
Zou, B.-S.
Feng, Y.-P. 
Keywords: adhesive force
electrically adjustable
MnO2 nanotube arrays
superhydrophobic
wettability
Issue Date: 7-Jan-2011
Citation: Zhao, X.-D., Fan, H.-M., Luo, J., Ding, J., Liu, X.-Y., Zou, B.-S., Feng, Y.-P. (2011-01-07). Electrically adjustable, super adhesive force of a superhydrophobic aligned MnO2 nanotube membrane. Advanced Functional Materials 21 (1) : 184-190. ScholarBank@NUS Repository. https://doi.org/10.1002/adfm.201000603
Abstract: A superhydrophobic membrane of MnO2 nanotube arrays on which a water droplet can be immobilized by application of a small DC bias, despite a large contact angle, is reported. For a 3 μL water droplet, the measured adhesive force increases monotonically with increasing negative voltage, reaching a maximum of 130 μN at 22 V, 25 times the original value. It follows that the nearly spherical water droplet can be controllably pinned on the substrate, even if the substrate is turned upside down. Moreover, the electrically adjustable adhesion is strongly polarity-dependent: only a five-fold increase is found when a positive bias of 22 V is applied. This remarkable electrically-controlled adhesive property is ascribed to the change in contact geometry between the water droplet and MnO2 nanotube array, on which water droplets exhibit the different continuities of three-phase contact line. As the modulation in this manner is in situ, fast, efficient and environmentally-friendly, this kind of smart material with electrically adjustable adhesive properties has a wide variety of applications in biotechnology and in lab-on-chip devices. The adhesive force of a water droplet on a superhydrophobic MnO2 nanotube array (MTA) shows a successive and controllable increase with the application of a small negative DC bias. This remarkable adhesive property is ascribed to the change in contact geometry between the water droplet and MTA. Such a smart interfacial material has a variety of applications in biotechnology and in lab-on-chip devices. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Source Title: Advanced Functional Materials
URI: http://scholarbank.nus.edu.sg/handle/10635/86287
ISSN: 1616301X
DOI: 10.1002/adfm.201000603
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

56
checked on Jun 18, 2018

WEB OF SCIENCETM
Citations

55
checked on Jun 18, 2018

Page view(s)

53
checked on May 25, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.