Please use this identifier to cite or link to this item: https://doi.org/10.1039/c3cp52311j
Title: Enhancing the electrochemical kinetics of high voltage olivine LiMnPO 4 by isovalent co-doping
Authors: Ramar, V.
Balaya, P. 
Issue Date: 28-Oct-2013
Citation: Ramar, V., Balaya, P. (2013-10-28). Enhancing the electrochemical kinetics of high voltage olivine LiMnPO 4 by isovalent co-doping. Physical Chemistry Chemical Physics 15 (40) : 17240-17249. ScholarBank@NUS Repository. https://doi.org/10.1039/c3cp52311j
Abstract: We report here doping of Fe2+ and/or Mg2+ in LiMnPO4 cathode material to enhance its lithium storage performance and appraise the effect of doping. For this purpose, LiMn0.9Fe (0.1-x)MgxPO4/C (x = 0 and 0.05) and LiMn 0.95Mg0.05PO4/C have been prepared by a ball mill assisted soft template method. These materials were prepared with similar morphology, particle size and carbon content. Amongst them, the isovalent co-doped LiMn0.9Fe0.05Mg0.05PO4/C sample shows better electrochemical performance compared to LiMn 0.9Fe0.1PO4/C and LiMn0.95Mg 0.05PO4/C samples. For instance, a lithium storage capacity of 159 mA h g-1 is obtained at 0.1 C for LiMn 0.9Fe0.05Mg0.05PO4/C material with a relatively low polarization of ∼139 mV. This is in sharp contrast to LiMn0.9Fe0.1PO4/C and LiMn 0.95Mg0.05PO4/C which show only 136.8 and 128.4 mA h g-1 at 0.1 C with the polarization of ∼222 and 334 mV respectively. Further, the LiMn0.9Fe0.05Mg 0.05PO4/C electrode delivers discharge capacities of 155.8, 141.4, 118.8, 104.6, 81.4 and 51.8 mA h g-1 at 0.2, 0.5, 1, 2, 5 and 10 C respectively. This electrode material also retains a capacity of 116 mA h g-1 at 1 C after 200 cycles, which is 96% of its initial capacity. Such improved cycling stability of LiMn0.9Fe 0.05Mg0.05PO4/C is attributed to the suppressed Mn dissolution in the electrolyte compared to the other samples. Further, during the Li extraction process, delithiated phases created from the Fe 2+/Fe3+ redox reaction (∼3.45 V) favor enhanced electrochemical activity of the succeeding Mn2+/Mn3+ redox couples. The fully charged state (4.6 V) contains a partially lithiated phase owing to the presence of electrochemically inactive Mg2+. The presence of such lithiated phase provides a favourable environment for the subsequent lithium insertion process. We also observe improved electronic conductivity and Li-ion diffusion for the co-doped sample compared to LiMnPO4 doped with either Fe2+ or Mg2+ by impedance measurements. The improved storage performance of co-doped LiMnPO 4 is thus explained in terms of (i) favorable extraction and insertion reactions and (ii) enhanced transport properties. © 2013 the Owner Societies.
Source Title: Physical Chemistry Chemical Physics
URI: http://scholarbank.nus.edu.sg/handle/10635/85157
ISSN: 14639076
DOI: 10.1039/c3cp52311j
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.