Please use this identifier to cite or link to this item: https://doi.org/10.1109/TED.2012.2211881
Title: Phase-change random access memory with multilevel resistances implemented using a dual phase-change material stack
Authors: Gyanathan, A.
Yeo, Y.-C. 
Keywords: Ag 0.5In 0.5 Sb 3 Te 6 (AIST)
crystallization temperature
Ge 1 Sb 4 Te 7 (GST147)
Ge 2 Sb 2 Te 5 (GST)
melting temperature
multilevel
nitrogen-doped GST (NGST)
phase-change random access memory (PCRAM)
Issue Date: 2012
Citation: Gyanathan, A., Yeo, Y.-C. (2012). Phase-change random access memory with multilevel resistances implemented using a dual phase-change material stack. IEEE Transactions on Electron Devices 59 (11) : 2910-2916. ScholarBank@NUS Repository. https://doi.org/10.1109/TED.2012.2211881
Abstract: This paper investigates the multilevel behavior of phase-change random access memory devices with a dual phase-change material (PCM) stack, i.e., two PCMs stacked on one another. The dual PCM stack comprises of a Ge 2 Sb 2 Te 5 (GST) layer and a top PCM layer sandwiching a SiN barrier layer. The top PCM layer was varied in three different splits: Ag 0.5In 0.5 Sb 3 Te 6 (AIST), Ge-{1}\hbox{Sb}-{4}\hbox{Te} 7 (GST147), and nitrogen-doped GST (NGST). Extensive electrical characterization and statistical analysis were performed. The intrinsic properties of AIST, GST147, and NGST were used to explain the differences in electrical performances of the three multilevel device splits. The AIST/SiN/GST device split was found to have had the best electrical performance. The difference in electrical resistivities and thermal conductivities played a major role in the power consumption as well as the resistance values of the three multilevel states in these dual PCM multilevel devices. © 2012 IEEE.
Source Title: IEEE Transactions on Electron Devices
URI: http://scholarbank.nus.edu.sg/handle/10635/82887
ISSN: 00189383
DOI: 10.1109/TED.2012.2211881
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.