Please use this identifier to cite or link to this item:
https://doi.org/10.1063/1.2115078
Title: | Germanium n+/p junction formation by laser thermal process | Authors: | Huang, J. Wu, N. Zhang, Q. Zhu, C. Tay, A.A.O. Chen, G. Hong, M. |
Issue Date: | 24-Oct-2005 | Citation: | Huang, J., Wu, N., Zhang, Q., Zhu, C., Tay, A.A.O., Chen, G., Hong, M. (2005-10-24). Germanium n+/p junction formation by laser thermal process. Applied Physics Letters 87 (17) : 1-3. ScholarBank@NUS Repository. https://doi.org/10.1063/1.2115078 | Abstract: | In this letter, an n+ p junction on a germanium substrate, formed by phosphorous implantation and subsequent laser thermal annealing process, is demonstrated. The effects of laser energy fluence and irradiation pulse number on the redistribution of dopant atoms have been investigated. The secondary-ion-mass-spectrometry results indicate that steplike dopant profiles are formed with dopant atoms extending deeper upon increased laser energy fluence and successive pulse number. After being irradiated at a laser energy fluence of 0.16 J cm2 with two successive pulses, the junction exhibits a sheet resistance of ∼50 Ohmsq for n+ region, a comparable current-voltage characteristic, and much less phosphorus dopant diffusion in comparison with those formed by rapid thermal process annealing. © 2005 American Institute of Physics. | Source Title: | Applied Physics Letters | URI: | http://scholarbank.nus.edu.sg/handle/10635/82411 | ISSN: | 00036951 | DOI: | 10.1063/1.2115078 |
Appears in Collections: | Staff Publications |
Show full item record
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.