Please use this identifier to cite or link to this item: https://doi.org/10.1143/JJAP.48.04C156
Title: A computational study on the device performance of Graphene Nanoribbon resonant tunneling diodes
Authors: Teong, H.
Lam, K.-T.
Liang, G. 
Issue Date: Apr-2009
Source: Teong, H., Lam, K.-T., Liang, G. (2009-04). A computational study on the device performance of Graphene Nanoribbon resonant tunneling diodes. Japanese Journal of Applied Physics 48 (4 PART 2) : -. ScholarBank@NUS Repository. https://doi.org/10.1143/JJAP.48.04C156
Abstract: Device performance of semiconducting graphene nanoribbon resonant tunneling diodes (GNR RTDs) with different shapes and dimensions was investigated using the real space, π-orbital tight-binding approach embedded in non-equilibrium Green's function formalism. The robustness of the device operating mechanism of GNR RTDs was demonstrated with their peak currents occurring at a similar bias (Vpeak) regardless of the shapes and temperatures. Furthermore, the impact of different ribbon widths at the contact/channel regions, which resulted in the different electronic structures, on electron transport was investigated at low temperature. A decrease in the channel width was found to increase the drive current while an increase in the contact width degraded it. The peak to valley ratio was degraded for both cases, while the Vpeak was increased. This study suggests that the device performance of GNR RTDs can be tuned by varying the ribbon width at the different sections, thereby providing great flexibility in future circuit designs. © 2009 The Japan Society of Applied Physics.
Source Title: Japanese Journal of Applied Physics
URI: http://scholarbank.nus.edu.sg/handle/10635/81855
ISSN: 00214922
DOI: 10.1143/JJAP.48.04C156
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

4
checked on Apr 16, 2018

WEB OF SCIENCETM
Citations

3
checked on Apr 16, 2018

Page view(s)

25
checked on Mar 12, 2018

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.