Please use this identifier to cite or link to this item: https://doi.org/10.1016/S0378-7796(96)01063-2
Title: Simulated hardware design of artificial neural networks for adaptive plant control
Authors: Chang, C.S. 
Wang, F.
Liew, A.C. 
Keywords: Artificial neural networks
Controller design
Hardware circuit design
Issue Date: Jun-1996
Citation: Chang, C.S., Wang, F., Liew, A.C. (1996-06). Simulated hardware design of artificial neural networks for adaptive plant control. Electric Power Systems Research 37 (3) : 231-240. ScholarBank@NUS Repository. https://doi.org/10.1016/S0378-7796(96)01063-2
Abstract: In this paper, an artificial neural network (ANN) hardware circuit design for implementing online plant parameter identification and plant control is presented. The parallel structure of the ANN hardware is typical of the feedforward network with a real-time back-propagation training algorithm. The circuit is designed for implementing energy function minimization and the gradient descent algorithm. Different schemes of the hardware design are discussed for realizing adaptive control functions. Simulated results show that the proposed ANN circuit design has fulfilled the performance objective as required.
Source Title: Electric Power Systems Research
URI: http://scholarbank.nus.edu.sg/handle/10635/81172
ISSN: 03787796
DOI: 10.1016/S0378-7796(96)01063-2
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.