Please use this identifier to cite or link to this item:
https://scholarbank.nus.edu.sg/handle/10635/80537
Title: | High-order interpolation methods for finite-element solved potential distributions in the two-dimensional rectilinear coordinate system | Authors: | Khursheed, Anjam | Issue Date: | 1996 | Citation: | Khursheed, Anjam (1996). High-order interpolation methods for finite-element solved potential distributions in the two-dimensional rectilinear coordinate system. Proceedings of SPIE - The International Society for Optical Engineering 2858 : 115-125. ScholarBank@NUS Repository. | Abstract: | This paper compares the accuracy of three high order interpolation methods to drive spatial derivative information from finite element meshes in the 2D rectilinear coordinate system. These methods involve using a C 1 triangle interpolant, spline/hermite cubic interpolation, and a local polynomial function fit. 2D electric potential distributions are analyzed for a test example on which the radial electric field is evaluated at scattered points in a domain composed of block regions. The results show that of the methods considered, a local polynomial expansion suing basis functions which satisfy Laplace's equation is the most accurate. The better accuracy of this method however, can only be obtained for potential distributions that have a low degree of discretization noise at their mesh nodes. | Source Title: | Proceedings of SPIE - The International Society for Optical Engineering | URI: | http://scholarbank.nus.edu.sg/handle/10635/80537 | ISBN: | 0819422460 | ISSN: | 0277786X |
Appears in Collections: | Staff Publications |
Show full item record
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.