Please use this identifier to cite or link to this item: https://doi.org/10.1109/ICDE.2013.6544850
Title: Utilizing users' tipping points in E-commerce recommender systems
Authors: Hu, K.
Hsu, W. 
Lee, M.L. 
Issue Date: 2013
Citation: Hu, K.,Hsu, W.,Lee, M.L. (2013). Utilizing users' tipping points in E-commerce recommender systems. Proceedings - International Conference on Data Engineering : 494-504. ScholarBank@NUS Repository. https://doi.org/10.1109/ICDE.2013.6544850
Abstract: Existing recommendation algorithms assume that users make their purchase decisions solely based on individual preferences, without regard to the type of users nor the products' maturity stages. Yet, extensive studies have shown that there are two types of users: innovators and imitators. Innovators tend to make purchase decisions based solely on their own preferences; whereas imitators' purchase decisions are often influenced by a product's stage of maturity. In this paper, we propose a framework that seamlessly incorporates the type of user and product maturity into existing recommendation algorithms. We apply Bass model to classify each user as either an innovator or imitator according to his/her previous purchase behavior. In addition, we introduce the concept of tipping point of a user. This tipping point refers to the point on the product maturity curve beyond which the user is likely to be more receptive to purchasing the product. We refine two widely-adopted recommendation algorithms to incorporate the effect of product maturity in relation to the user type. Experiment results on a real-world dataset obtained from an E-commerce website show that the proposed approach outperforms existing algorithms. © 2013 IEEE.
Source Title: Proceedings - International Conference on Data Engineering
URI: http://scholarbank.nus.edu.sg/handle/10635/78420
ISBN: 9781467349086
ISSN: 10844627
DOI: 10.1109/ICDE.2013.6544850
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.