Please use this identifier to cite or link to this item:
https://doi.org/10.1145/2502081.2502203
Title: | Understanding and classifying image tweets | Authors: | Chen, T. Lu, D. Kan, M.-Y. Cui, P. |
Keywords: | Analysis Classification Image tweets Microblog |
Issue Date: | 2013 | Citation: | Chen, T., Lu, D., Kan, M.-Y., Cui, P. (2013). Understanding and classifying image tweets. MM 2013 - Proceedings of the 2013 ACM Multimedia Conference : 781-784. ScholarBank@NUS Repository. https://doi.org/10.1145/2502081.2502203 | Related Dataset(s): | 10635/137404 | Abstract: | Social media platforms now allow users to share images alongside their textual posts. These image tweets make up a fast-growing percentage of tweets, but have not been studied in depth unlike their text-only counterparts. We study a large corpus of image tweets in order to uncover what people post about and the correlation between the tweet's image and its text. We show that an important functional distinction is between visually-relevant and visually-irrelevant tweets, and that we can successfully build an automated classifier utilizing text, image and social context features to distinguish these two classes, obtaining a macro F1 of 70.5%. Copyright © 2013 ACM. | Source Title: | MM 2013 - Proceedings of the 2013 ACM Multimedia Conference | URI: | http://scholarbank.nus.edu.sg/handle/10635/78411 | ISBN: | 9781450324045 | DOI: | 10.1145/2502081.2502203 |
Appears in Collections: | Staff Publications |
Show full item record
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.